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ABSTRACT
Several activities, comprising animate and inanimate enti-
ties, can be examined by means of SNA. Classification tasks
within social network structures remain crucial research prob-
lems in SNA. Inherent and latent facts about social graphs
can be effectively exploited for training Artificial Intelligence
(AI) models in a bid to categorize actors/nodes as well as
identify clusters with respect to a given social network. Thus,
important factors such as the individual attributes of spa-
tial social actors and the underlying patterns of relationship
binding these social actors must be taken into consideration.
These factors are relevant to understanding the nature and
dynamics of a given social graph. In this paper, we have pro-
posed a hybrid model: RLVECO which has been modelled for
studying and extracting meaningful facts from social network
structures to aid in node classification and community detec-
tion problems. RLVECO utilizes an edge sampling approach
for exploiting features of a social graph, via learning the
context of each actor with respect to its neighboring actors,
with the aim of generating vector-space embeddings per actor
which are further exploited for unexpressed representations
via a sequence of convolution operations. Successively, these
relatively low-dimensional representations are fed as input
features to a downstream classifier for solving community
detection and node classification problems about a given
social network.

CCS CONCEPTS
• Human-centered computing → Social network analysis; •
Computing methodologies → Artificial intelligence; Machine
learning; Neural networks.
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1 INTRODUCTION AND RELATED
LITERATURE

Humans inhabit a planet comprised of several systems and
ecosystems; and interaction is a natural phenomenon and
characteristic obtainable in any given system or ecosystem.
Thus, relationship between constituent entities in a given
system/ecosystem is a strategy for survival, and essential
for the sustenance of the system/ecosystem. With respect to
the recent advances in AI, real-world (complex) systems and
ecosystems can be effectively represented as social network
structures and analyzed by means of SNA. Furthermore, SNA
plays a pivotal role especially in the modelling and impact
analysis of pandemic outbreaks like Corona Virus Disease
2019 (COVID-19). Techniques for categorizing/classifying
social actors in SNA can be implemented for predicting
potential actors/nodes/entities as well as communities or
clusters that are likely to be affected and/or infected by
the COVID-19 virus as a result of social interaction and/or
community spread within a given social network structure.
Social (network) graphs [23] are non-static structures which
pose analytical challenges to Machine Learning (ML) and
Deep Learning (DL) models because of their complex links,
random nature, and occasionally massive size. In this regard,
we propose RLVECO which is a hybrid DL-based model for
classification and clustering problems in social networks.

Actor/Node classification and community detection remain
open research problems in SNA. The act of categorizing actors
induces the formation of cluster(s). Consequently, clusters
give rise to homophily in social networks. Herein our proposed
methodology is based on an iterative learning approach [1]
which is targeted at solving the problems of node classification
and community detection using an edge sampling strategy.
Basically, learning in RLVECO is induced via semi-supervised
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training; and RLVECO is capable of learning the non-linear
distributed features enmeshed in a social network [9]. Hence,
the novelty of our research contribution are stated below:

(1) Proposition of a DL-based and hybrid model, RLVECO,
designed for resolving tie or link prediction problems
in social network structures.

(2) Comprehensive benchmarking results which are based
on classic objective functions used for standard classi-
fiers.

(3) Comparative analyses, between RLVECO and state-
of-the-art methodologies, against standard real-world
social networks.

Also, we have evaluated RLVECO against an array of
state-of-the-art models and Representation Learning (RL)
approaches which serve as our baselines, viz:

(i) DeepWalk: Online Learning of Social Representations
[20].

(ii) GCN: Semi-Supervised Classification with Graph Con-
volutional Networks [11].

(iii) LINE: Large-scale Information Network Embedding
[26].

(iv) Node2Vec: Scalable Feature Learning for Networks [8].
(v) SDNE: Structural Deep Network Embedding [27].

2 PROPOSED METHODOLOGY AND
FRAMEWORK

2.1 Definition of Problem
Definition 2.1. Social Network, 𝑆𝑁 : As expressed via

equation 1 such that 𝑆𝑁 is a tuple comprising a set of ac-
tors/vertices, 𝑉 ; a set of ties/edges, 𝐸; a metadata func-
tion, 𝑓𝑉 , which extends the definition of the vertices’ set by
mapping it to a given set of attributes, 𝑉 ′; and a metadata
function, 𝑓𝐸 , which extends the definition of the edges’ set
by mapping it to a given set of attributes, 𝐸′. Thus, a graph
function, 𝐺(𝑉, 𝐸) ⊂ 𝑆𝑁 .

𝑆𝑁 = {𝑉, 𝐸, 𝑓𝑉 , 𝑓𝐸} ≡ {𝐺, 𝑓𝑉 , 𝑓𝐸}
𝑉 : |{𝑉 }|= 𝑀 set of actors/vertices with size, M
𝐸 : 𝐸 ⊂ {𝑈 × 𝑉 } ⊂ {𝑉 × 𝑉 } set of ties/edges between V

𝑓𝑉 : 𝑉 → 𝑉 ′ vertices’ metadata function

𝑓𝐸 : 𝐸 → 𝐸′ edges’ metadata function
(1)

Definition 2.2. Knowledge Graph, 𝐾𝐺: (E,R) is a set
comprising entities, E, and relations, R, between the entities.
Thus, a 𝐾𝐺 [25][30] is defined via a set of triples, 𝑡 : (𝑢, 𝑝, 𝑣),
where 𝑢, 𝑣 ∈ E and 𝑝 ∈ R. Also, a 𝐾𝐺 [28] can be modelled
as a social network, 𝑆𝑁 , such that: E→ 𝑉 and R→ 𝐸 and
(E,R) ⊢ 𝑓𝑉 , 𝑓𝐸 .

Definition 2.3. Knowledge-Graph (Vector) Embeddings,
𝑋: The vector-space embeddings, 𝑋, generated by the embed-
ding layer are based on a mapping function, 𝑓 , expressed via
equation 2. 𝑓 projects the representation of the graph’s actors

to a q-dimensional real space, R𝑞, such that the existent ties
between any given pair of actors, (𝑢𝑖, 𝑣𝑗), remain preserved
via the homomorphism from 𝑉 to 𝑋.

𝑓 : 𝑉 → 𝑋 ∈ R𝑞

𝑓 : (𝑢, 𝑝, 𝑣)→ 𝑋 ∈ R𝑞 Knowledge-Graph Embeddings
(2)

Definition 2.4. Node Classification: Considering, 𝑆𝑁 ,
comprising partially labelled actors (or vertices), 𝑉𝑙𝑏𝑙 ⊂ 𝑉 :
𝑉𝑙𝑏𝑙 → 𝑌𝑙𝑏𝑙; and unlabelled vertices defined such that: 𝑉𝑢𝑙𝑏 =
𝑉 −𝑉𝑙𝑏𝑙. A node-classification model aims at training a predic-
tive function, 𝑓 : 𝑉 → 𝑌 , that learns to predict the labels, 𝑌 ,
for all actors or vertices, 𝑉 ⊂ 𝑆𝑁 , via knowledge harnessed
from the mapping: 𝑉𝑙𝑏𝑙 → 𝑌𝑙𝑏𝑙.

Figure 1: Node classification task in social graphs

2.2 Proposed Methodology
Our proposition, RLVECO, is comprised of two (2) distinct
Feature Learning (FL) layers, and one (1) classification layer.

2.2.1 Representation Learning - Knowledge-Graph Embeddings
Layer: Given a social network, 𝑆𝑁 , defined by a set of ac-
tors/vertices, 𝑉 : 𝑈 ⊂ 𝑉 ∀ {𝑢𝑚, 𝑣𝑚} ∈ 𝑉 , and 𝑀 : 𝑚 ∈ 𝑀
denotes the number of unique actors in 𝑆𝑁 . Additionally, let
the ties/edges in 𝑆𝑁 be defined such that: 𝐸 ⊂ {𝑈 × 𝑉 };
where 𝑢𝑖 ∈ 𝑉 and 𝑣𝑗 ∈ 𝑉 represent a source_vertex and a
target_vertex in 𝐸, respectively.

The objective function of the Knowledge-Graph Embed-
dings layer aims at maximizing the average logarithmic proba-
bility of the source_vertex, 𝑢𝑖, being predicted as a neighbor-
ing actor to the target_vertex, 𝑣𝑗 , with respect to all training
pairs, ∀ (𝑢𝑖, 𝑣𝑗) ∈ 𝐸. Formally, the function is expressed as
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in equation 3:

𝜇 = 1
𝑀

𝑀∑︁
𝑚=1

(
∑︁

(𝑢𝑖,𝑣𝑗)∈𝐸

𝑙𝑜𝑔𝑃 𝑟(𝑢𝑖|𝑣𝑗)) (3)

Consequently, in order to compute 𝑃 𝑟(𝑢𝑖|𝑣𝑗), we have to
quantify the proximity of each target_vertex, 𝑣𝑗 , with re-
spect to its source_vertex, 𝑢𝑖. The vector-embedding model
measures this adjacency/proximity as the cosine similarity be-
tween 𝑣𝑗 and its corresponding 𝑢𝑖. Thus, the cosine distance is
calculated as the dot product between the target_vertex and
the source_vertex. Mathematically, 𝑃 𝑟(𝑢𝑖|𝑣𝑗) is computed
via a softmax function as defined in equation 4:

𝑃 𝑟(𝑢𝑖|𝑣𝑗) =
𝑒𝑥𝑝(𝑢𝑖 · 𝑣𝑗)∑︀𝑀

𝑚=1 𝑒𝑥𝑝(𝑢𝑚 · 𝑣𝑗)
(4)

Hence, the objective function of our vector-embedding (VE)
model with respect to the 𝑆𝑁 is as expressed by equation 5:∑︁
(𝑢𝑖,𝑣𝑗)∈𝐸

𝑙𝑜𝑔𝑃 𝑟(𝑢𝑖|𝑣𝑗) =
∑︁

(𝑢𝑖,𝑣𝑗)∈𝐸

𝑙𝑜𝑔
𝑒𝑥𝑝(𝑢𝑖 · 𝑣𝑗)∑︀𝑀

𝑚=1 𝑒𝑥𝑝(𝑢𝑚 · 𝑣𝑗)
(5)

2.2.2 Representation Learning - Convolution Operations Layer:
This layer comprises three (3) RL or FL operations, namely:
convolution, non-linearity, and pooling operations. RLVECO
utilizes a one-dimensional (1D) convolution-operations layer
[17] which is sandwiched between the vector-embedding and
classification layers. Equation 6 expresses the 1D-convolution
operation, viz:

𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝(𝐹 ) = 1𝐷_𝐼𝑛𝑝𝑢𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑋) *𝐾𝑒𝑟𝑛𝑒𝑙(𝐾)

𝑓𝑖 = (𝑋 *𝐾)𝑖 = (𝐾 *𝑋)𝑖 =
𝐽−1∑︁
𝑗=0

𝑥𝑗 · 𝑘𝑖−𝑗 =
𝐽−1∑︁
𝑗=0

𝑘𝑗 · 𝑥𝑖−𝑗

(6)
where 𝑓𝑖 represents a cell/matrix position in the Feature Map;
𝑘𝑗 denotes a cell position in the Kernel; and 𝑥𝑖−𝑗 denotes a
cell/matrix position in the 1D-Input (data) matrix.

The non-linearity operation is a rectified linear unit (ReLU)
function which introduces non-linearity after the convolution
operation since real-world problems usually exist in non-linear
form(s). As a result, the rectified feature/activation map is
computed via: 𝑟𝑖 ∈ 𝑅 = 𝑔(𝑓𝑖 ∈ 𝐹 ) = 𝑚𝑎𝑥(0, 𝐹 ).

The pooling operation is responsible for reducing the input
width of each rectified activation map while retaining its vital
properties. In this regard, the Max Pooling function is defined
such that the resultant pooled (or downsampled) feature map
is generated via: 𝑝𝑖 ∈ 𝑃 = ℎ(𝑟𝑖 ∈ 𝑅) = 𝑚𝑎𝑥𝑃 𝑜𝑜𝑙(𝑅).

2.2.3 Classification - Multi-Layer Perceptron (MLP) Classifier
Layer: This is the last layer of RLVECO’s architecture, and
it succeeds the representation-learning layers. The pooled
feature maps, generated by the representation-learning layers,
contain high-level features extracted from the constituent
actors in the social graph. Hence, the classification layer
utilizes these extracted “high-level features” for classifying
actors in a bid to identify clusters contained in the social

graph. The objective of the MLP [5] classifier function, 𝑓𝑐,
is to map a given set of input values, 𝑃 , to their respective
output labels, 𝑌 , viz:

𝑌 = 𝑓𝑐(𝑃, Θ) (7)

In equation 7, Θ denotes a set of parameters. The MLP [4]
function, 𝑓𝑐, learns the values of Θ that will result in the best
decision (𝑌 ) approximation for the input set, 𝑃 . The MLP
classifier output is a probability distribution which indicates
the likelihood of a representation belonging to a particular
output class. Our MLP [10] classifier is modelled such that
sequential layers of Neural Network (NN) units are stacked
against each other to form a Deep Neural Network (DNN)
structure [3], [15].

2.2.4 Node Classification - Proposed Algorithm: RLVECO’s
architecture comprises two (2) discrete representation-learning
layers, viz: a Knowledge-Graph Embeddings (VE) layer and
a Convolution Operations (CO) layer [16]; which are both
trained by means of unsupervised training. Basically, these
layers are feature-extraction and dimensionality-reduction
layers where underlying knowledge and viable facts are auto-
matically extracted from the social network structure. The
VE layer is responsible for projecting the feature represen-
tation of the social graph to a q-dimensional real-number
space, R𝑞. This is done by associating a real-number vector
to every unique actor/node in the social network structure
such that the (cosine) distance of any given tie or edge would
capture a significant degree of correlation between its pair of
associated actors. Furthermore, the Convolution Operations
layer feeds on the Knowledge-Graph Embeddings layer; and
it is responsible for further extraction of apparent features
and/or representations from the social graph. Finally, a clas-
sification layer succeeds the representation-learning layers;
and it is trained by means of supervised training. The clas-
sifier is based on a NN architecture assembled using deep
(multi) layers of stacked perceptrons (NN units) [6]. Every
low-dimensional feature (𝑋), extracted by the representation-
learning layers, is mapped to a corresponding output label
(𝑌 ). These (𝑋, 𝑌 ) pairs are used to supervise the training of
the classifier such that it can effectively/efficiently learn how
to identify clusters and classify actors within a given social
graph. Ergo, RLVECO’s is formally expressed algorithm 1.

2.3 Proposed Architecture/Framework
Fig. 2 illustrates the architecture of our proposition, RLVECO.

3 DATASETS AND MATERIALS
3.1 Datasets
With regard to Table 1 herein, seven (7) real-world and
benchmark social-graph datasets were utilized for experi-
mentation and evaluation, viz: CiteSeer [24] [21], Cora [24]
[21], Facebook Page-Page webgraph [22], Internet-Industry
partnerships [12] [13] [2], PubMed-Diabetes [18], Terrorists-
Relationship [31], and Zachary-Karate [29] [14].
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Algorithm 1 Proposed Node Classification Algorithm
Input: {𝑉, 𝐸, 𝑌𝑙𝑏𝑙} ≡ {Actors, Ties, Ground-Truth Labels}

Output: {𝑌𝑢𝑙𝑏} ≡ {Predicted Labels}

Preprocessing:
// 𝑉𝑙𝑏𝑙 : Labelled actors // 𝑉𝑢𝑙𝑏 : Unlabelled actors
𝑉𝑙𝑏𝑙, 𝑉𝑢𝑙𝑏 ⊂ 𝑉 = 𝑉𝑙𝑏𝑙 ∪ 𝑉𝑢𝑙𝑏
𝐸 : (𝑢𝑖, 𝑣𝑗) ∈ {𝑈×𝑉 } // (𝑢𝑖, 𝑣𝑗) ≡ (source, target)

// |𝐸𝑡𝑟𝑎𝑖𝑛|=
∑︀

𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑉𝑙𝑏𝑙) +
∑︀

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑉𝑙𝑏𝑙)
𝐸𝑡𝑟𝑎𝑖𝑛 = 𝐸𝑡 : 𝑢𝑖, 𝑣𝑗 ∈ 𝑉𝑙𝑏𝑙
𝐸𝑝𝑟𝑒𝑑 = 𝐸𝑝 : 𝑢𝑖, 𝑣𝑗 ∈ 𝑉𝑢𝑙𝑏

𝑓𝑐 ← Initialize // Construct classifier model

Training:
for 𝑡← 0 to |𝐸𝑡𝑟𝑎𝑖𝑛| do

𝑓 : 𝐸𝑡 → [𝑋 ∈ R𝑞 ] // Embedding operation

𝑓𝑡 ∈ 𝐹 = (𝐾*𝑋)𝑡 // Convolution operation

𝑟𝑡 ∈ 𝑅 = 𝑔(𝐹 ) = 𝑚𝑎𝑥(0, 𝑓𝑡)
𝑝𝑡 ∈ 𝑃 = ℎ(𝑅) = 𝑚𝑎𝑥𝑃 𝑜𝑜𝑙(𝑟𝑡)
𝑓𝑐|Θ : 𝑝𝑡 → 𝑌𝑙𝑏𝑙 // MLP classification operation

end for

return 𝑌𝑢𝑙𝑏 = 𝑓𝑐(𝐸𝑝𝑟𝑒𝑑, Θ)

Figure 2: Proposed architectural framework of RLVECO

3.2 Data Preprocessing
All benchmark datasets ought to be comprised of actors and
ties already encoded as discrete data (whole-number format).
However, CiteSeer, Cora, Facebook-Page2Page, PubMed-
Diabetes, and Terrorists-Relation datasets are made up of

Table 1: Benchmark datasets

Dataset Classes → {label: ‘description’}
CiteSeer 𝐺(𝑉, 𝐸) = 𝐺(3312, 4732)

{C1: ‘Agents’, C2: ‘Artificial Intelligence’, C3:
‘Databases’, C4: ‘Information Retrieval’, C5:
‘Machine Learning’, C6: ‘Human-Computer In-
teraction’}

Cora 𝐺(𝑉, 𝐸) = 𝐺(2708, 5429)
{C1: ‘Case_Based’, C2: ‘Genetic_Algorithms’,
C3: ‘Neural_Networks’, C4: ‘Probabilis-
tic_Methods’, C5: ‘Reinforcement_Learning’,
C6: ‘Rule_Learning’, C7: ‘Theory’}

Facebook 𝐺(𝑉, 𝐸) = 𝐺(22470, 171002)
Page2Page {C1: ‘Companies’, C2: ‘Governmental Organiza-

tions’, C3: ‘Politicians’, C4: ‘Television Shows’}
Internet 𝐺(𝑉, 𝐸) = 𝐺(219, 631)
Industry {C1: ‘Content Sector’, C2: ‘Infrastructure Sec-

tor’, C3: ‘Commerce Sector’}
PubMed 𝐺(𝑉, 𝐸) = 𝐺(19717, 44338)
Diabetes {C1: ‘Diabetes Mellitus - Experimental’, C2: ‘Di-

abetes Mellitus - Type 1’, C3: ‘Diabetes Mellitus
- Type 2’}

Terrorists 𝐺(𝑉, 𝐸) = 𝐺(851, 8592)
Relation {C1: ‘Content Sector’, C2: ‘Infrastructure Sec-

tor’, C3: ‘Commerce Sector’}
Zachary 𝐺(𝑉, 𝐸) = 𝐺(34, 78)
Karate {C1: ‘Community 1’, C2: ‘Community 2’, C3:

‘Community 3’, C4: ‘Community 4’}

nodes and/or edges encoded in mixed formats (categorical
and numerical formats). Thus, it is necessary to transcode
these non-numeric (categorical) entities to their respective
discrete (numeric) data representation, without semantic loss,
via an injective function that maps each distinct entry in the
categorical-entity domain to a distinct numeric value in the
discrete-data codomain, 𝑓𝑚 : 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙→ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒. There-
after, the numeric representation of all benchmark datasets
are normalized, 𝑓𝑛 : 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 → 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, prior to train-
ing against RLVECO and the baselines. Also, only edgelist
ties, 𝐸(𝑈, 𝑉 ), whose constituent actors are present in the
nodelist, (𝑈, 𝑉 ) : ∀ {𝑢𝑚, 𝑣𝑚} ∈ 𝑉 ⊂ 𝐺, were used for train-
ing/testing/validating our model.

Table 2: Configuration of RLVECO’s hyperparameters

Training Set: 80% Network Depth: 6
Test Set: 20% Network Width: 640
Batch Size: 256 Optimizer: 𝐴𝑑𝑎𝑀𝑎𝑥

Epochs: 1.8 * 102 Activation: 𝑅𝑒𝐿𝑈

Dropout: 4.0 * 10−1 Embed Dimension: 100
Learning Rate: 1.0 * 10−3 Learning Decay: 0.0
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Figure 3: RLVECO’s learning-progress curves of dur-
ing training over CiteSeer, Cora, Facebook-Webgraph,
Internet-Industry-Partnership, PubMed-Diabetes, Terrorists-
Relationship, and Zachary-Karate datasets - loss function vs
training epochs.

Table 3: Categorization of actors using CiteSeer dataset with
regard to the set apart validation sample - dataset vs models.

M
od

el

Metric CiteSeer Dataset

Po
in

ts

C1 C2 C3 C4 C5 C6 𝜇

R
LV

E
C

O PC 0.76 0.81 0.78 0.43 0.88 0.60 0.71

12
RC 0.84 0.83 0.79 0.60 0.79 0.65 0.75
F1 0.80 0.82 0.79 0.50 0.83 0.63 0.73
AC 0.93 0.88 0.92 0.93 0.96 0.89 0.92
RO 0.90 0.87 0.87 0.78 0.89 0.79 0.85
SP 304 609 377 107 225 275 316

G
C

N

PC 0.80 0.78 0.86 0.95 0.91 0.75 0.84

2
RC 0.76 0.76 0.73 0.08 0.67 0.54 0.59
F1 0.78 0.77 0.79 0.15 0.77 0.63 0.65
AC 0.88 0.87 0.88 0.91 0.89 0.83 0.88
RO 0.84 0.83 0.83 0.53 0.81 0.72 0.76
SP 119 134 140 50 102 118 111

N
od

e2
Ve

c PC 0.57 0.55 0.49 0.33 0.55 0.38 0.48

0
RC 0.55 0.60 0.66 0.06 0.45 0.40 0.45
F1 0.56 0.58 0.56 0.10 0.50 0.39 0.45
AC 0.85 0.82 0.78 0.92 0.86 0.78 0.84
RO 0.73 0.74 0.74 0.53 0.69 0.63 0.68
SP 119 134 140 50 102 118 111

D
ee

pW
al

k PC 0.46 0.53 0.43 0.43 0.47 0.33 0.44

0
RC 0.51 0.54 0.57 0.06 0.41 0.32 0.40
F1 0.49 0.54 0.49 0.11 0.44 0.32 0.40
AC 0.81 0.81 0.75 0.92 0.84 0.76 0.82
RO 0.69 0.71 0.69 0.53 0.66 0.59 0.65
SP 119 134 140 50 102 118 111

SD
N

E

PC 0.37 0.50 0.24 0.20 0.45 0.31 0.35

0
RC 0.19 0.27 0.77 0.02 0.14 0.09 0.25
F1 0.25 0.35 0.36 0.04 0.21 0.14 0.23
AC 0.80 0.80 0.42 0.92 0.84 0.80 0.76
RO 0.56 0.60 0.55 0.51 0.55 0.52 0.55
SP 119 134 140 50 102 118 111

LI
N

E

PC 0.18 0.30 0.28 0.60 0.22 0.27 0.31

0
RC 0.15 0.47 0.39 0.06 0.12 0.21 0.23
F1 0.16 0.36 0.32 0.11 0.15 0.24 0.22
AC 0.72 0.67 0.65 0.93 0.80 0.76 0.76
RO 0.50 0.59 0.56 0.53 0.52 0.55 0.54
SP 119 134 140 50 102 118 111

4 EXPERIMENT, RESULTS, AND
DISCUSSIONS

RLVECO has been tuned in accordance with the hyperparam-
eters shown in Table 2. Our evaluations herein were recorded
with reference to a range of objective functions. Thus, Cate-
gorical Cross Entropy was employed as the cost/loss function;
while the fitness/utility was measured based on the following
metrics: Precision (PC), Recall (RC), F-measure or F1-score
(F1), Accuracy (AC), and Area Under the Receiver Operating
Characteristic Curve (RO). Moreover, the objective functions
have been computed against each benchmark dataset with
regard to the constituent classes (or categories) present in
each dataset. The Support (SP) represents the number of
ground-truth samples per class/category contained in each
dataset.

In a bid to avoid sample bias across-the-board, we have
used exactly the same SP for all models inclusive of RLVECO.
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Table 4: Categorization of actors using Cora dataset with re-
spect to the set apart validation sample - dataset vs models.

M
od

el

Metric Cora Dataset

Po
in

ts

C1 C2 C3 C4 C5 C6 C7 𝜇

R
LV

E
C

O PC 0.85 0.78 0.80 0.88 0.72 0.90 0.81 0.82

14
RC 0.86 0.93 0.81 0.87 0.75 0.91 0.78 0.84
F1 0.86 0.85 0.81 0.87 0.74 0.91 0.79 0.83
AC 0.93 0.98 0.96 0.95 0.93 0.97 0.96 0.95
RO 0.90 0.96 0.90 0.92 0.85 0.95 0.88 0.91
SP 541 134 214 405 294 345 237 310

G
C

N

PC 0.87 0.95 0.89 0.92 0.85 0.89 0.87 0.89

3
RC 0.85 0.73 0.65 0.82 0.58 0.85 0.73 0.74
F1 0.86 0.83 0.75 0.87 0.69 0.87 0.79 0.81
AC 0.89 0.93 0.91 0.92 0.88 0.93 0.91 0.91
RO 0.88 0.83 0.80 0.89 0.75 0.90 0.83 0.84
SP 164 36 43 85 70 84 60 77

N
od

e2
Ve

c PC 0.58 0.78 0.72 0.81 0.80 0.84 0.82 0.76

0
RC 0.85 0.50 0.53 0.68 0.64 0.74 0.60 0.65
F1 0.69 0.61 0.61 0.74 0.71 0.78 0.69 0.69
AC 0.77 0.96 0.95 0.92 0.93 0.94 0.94 0.92
RO 0.79 0.75 0.76 0.83 0.81 0.86 0.79 0.80
SP 164 36 43 85 70 84 60 77

D
ee

pW
al

k PC 0.57 0.58 0.72 0.58 0.68 0.72 0.63 0.64

0
RC 0.80 0.42 0.42 0.59 0.39 0.63 0.65 0.56
F1 0.67 0.48 0.53 0.58 0.49 0.67 0.64 0.58
AC 0.76 0.94 0.94 0.87 0.90 0.90 0.92 0.89
RO 0.77 0.70 0.70 0.75 0.68 0.79 0.80 0.74
SP 164 36 43 85 70 84 60 77

LI
N

E

PC 0.35 0.86 0.80 0.65 0.50 0.43 0.61 0.60

0
RC 0.85 0.17 0.19 0.35 0.20 0.15 0.23 0.31
F1 0.50 0.28 0.30 0.46 0.29 0.23 0.34 0.34
AC 0.48 0.94 0.93 0.87 0.87 0.84 0.90 0.83
RO 0.59 0.58 0.59 0.66 0.59 0.56 0.61 0.60
SP 164 36 43 85 70 84 60 77

SD
N

E

PC 0.37 0.83 0.70 0.60 0.54 0.64 0.64 0.62

0
RC 0.91 0.14 0.16 0.35 0.20 0.27 0.12 0.31
F1 0.53 0.24 0.26 0.44 0.29 0.38 0.20 0.33
AC 0.50 0.94 0.93 0.86 0.87 0.86 0.89 0.84
RO 0.62 0.57 0.58 0.65 0.59 0.62 0.55 0.60
SP 164 36 43 85 70 84 60 77

Since RLVECO is based on an edge-sampling technique; the
SP recorded against RLVECO model represents the number
of edges/ties used for computation as explained in algorithm
1. However, for other baselines (models) herein, SP capi-
talizes on the number of nodes/actors. Furthermore, the
performance of RLVECO model during comparative analyses
with respect to five (5) popular baselines (DeepWalk, GCN,
LINE, Node2Vec, SDNE); and when evaluated against the
validation/test samples of the benchmark datasets are as
documented in Table 3, Table 4, Table 5, Table 6, Table
7, Table 8, and Table 9 respectively. Consequently, Fig. 3
graphically shows the learning-progress curves of our pro-
posed model, RLVECO, during training over the benchmark
datasets. Hence, the dotted-black lines represent learning
progress over the training set; and the dotted-blue lines rep-
resent learning progress over the test set.

Tables 3, 4, 5, 6, 7, 8, and 9 have clearly tabulated our
results as a multi-classification task over the benchmark

Table 5: Categorization of actors/nodes using Facebook Page-
Page webgraph dataset with respect to the reserved valida-
tion/test sample - dataset vs models.

M
od

el

Metric Facebook-Page2Page Dataset

Po
in

ts

C1 C2 C3 C4 𝜇

R
LV

E
C

O PC 0.87 0.95 0.91 0.87 0.90

8
RC 0.84 0.85 0.85 0.86 0.85
F1 0.85 0.90 0.88 0.86 0.87
AC 0.96 0.90 0.94 0.97 0.94
RO 0.97 0.97 0.98 0.98 0.98
SP 9989 33962 16214 6609 16694

N
od

e2
Ve

c PC 0.81 0.84 0.81 0.84 0.83

0
RC 0.82 0.87 0.85 0.67 0.80
F1 0.81 0.85 0.83 0.74 0.81
AC 0.89 0.91 0.91 0.93 0.91
RO 0.87 0.90 0.89 0.82 0.87
SP 1299 1376 1154 665 1124

D
ee

pW
al

k PC 0.75 0.84 0.76 0.75 0.78

0
RC 0.81 0.85 0.82 0.52 0.75
F1 0.78 0.84 0.79 0.62 0.76
AC 0.87 0.90 0.89 0.90 0.89
RO 0.85 0.89 0.87 0.75 0.84
SP 1299 1376 1154 665 1124

LI
N

E
PC 0.53 0.66 0.72 0.66 0.64

0
RC 0.72 0.71 0.59 0.29 0.58
F1 0.61 0.68 0.65 0.40 0.59
AC 0.73 0.80 0.83 0.87 0.81
RO 0.73 0.77 0.75 0.63 0.72
SP 1299 1376 1154 665 1124

SD
N

E

PC 0.49 0.80 0.70 0.65 0.66

0
RC 0.90 0.63 0.50 0.19 0.56
F1 0.64 0.70 0.58 0.29 0.55
AC 0.70 0.84 0.82 0.86 0.81
RO 0.76 0.78 0.71 0.58 0.71
SP 1299 1376 1154 665 1124

datasets. Thus, for each class per dataset, we have laid em-
phasis on the F1 (weighted average of the PC and RC metrics)
and RO; and we have highlighted the model which performed
best (based on F1 and RO metrics) for each classification
task using a bold font. Additionally, we have employed a
point-based ranking standard to ascertain the fittest model
for each node classification task. The model with the best
mean (𝜇) metrics and highest aggregate points signifies the
fittest model for the specified task, and so on in a descending
order of mean (𝜇) metrics and aggregate points. Accordingly,
as can be seen from our tabular results, RLVECO is at the
top with the highest fitness points; and this encouraging
performance can be attributed to two (2) primary factors,
namely:

(1) The dual layers of Representation Learning (VE and
Convolutional Neural Network (ConvNet)) in RLVECO’s
conceptual model.

(2) The high-quality data preprocessing techniques em-
ployed herein with respect to the benchmark datasets.
We ensured that all constituent actors of a given social
graph were transcoded to their respective discrete data
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Table 6: Categorization of actors/nodes using Internet-
Industry partnerships dataset with respect to the set apart
validation/test sample - dataset vs models.

M
od

el

Metric Internet-Industry Partnerships

Po
in

ts

C1 C2 C3 𝜇

R
LV

E
C

O PC 0.33 0.96 0.29 0.53

5
RC 0.65 0.77 0.76 0.73
F1 0.44 0.86 0.42 0.57
AC 0.84 0.78 0.87 0.83
RO 0.76 0.81 0.82 0.80
SP 26 238 17 94

D
ee

pW
al

k PC 0.50 0.81 0.36 0.56

1
RC 0.12 0.93 0.44 0.50
F1 0.20 0.86 0.40 0.49
AC 0.82 0.82 0.73 0.79
RO 0.55 0.79 0.62 0.65
SP 8 27 9 15

N
od

e2
Ve

c PC 0.00 0.68 0.75 0.48

1
RC 0.00 1.00 0.33 0.44
F1 0.00 0.81 0.46 0.42
AC 0.82 0.70 0.84 0.79
RO 0.50 0.62 0.65 0.59
SP 8 27 9 15

SD
N

E

PC 0.00 0.61 0.00 0.20

0
RC 0.00 1.00 0.00 0.33
F1 0.00 0.76 0.00 0.25
AC 0.82 0.61 0.80 0.74
RO 0.50 0.50 0.50 0.50
SP 8 27 9 15

LI
N

E

PC 0.00 0.61 0.00 0.20

0
RC 0.00 1.00 0.00 0.33
F1 0.00 0.76 0.00 0.25
AC 0.82 0.61 0.80 0.74
RO 0.50 0.50 0.50 0.50
SP 8 27 9 15

representations, without any loss in semantics, and
normalized prior to training/testing/validation.

Since we have implemented a deep-layer architecture [10]
[4], there arises the need to strike a balance between the width
and depth of RLVECO’s proposed architecture so as to obtain
an efficient/effective model without increasing the chances
of underfitting or overfitting in the NN model [7]. Thus, we
have applied pruning of neuron(s) based on equation 8 as
well as global search methods. 𝑁𝑠, 𝑁𝑖, 𝑁𝑜, and 𝑁𝑚 represent
the sizes of training set, input layer, output layer, and hidden
layer respectively.

𝑁𝑚 = 𝑁𝑠

4 * (𝑁𝑖 + 𝑁𝑜) (8)

Dropout regularization has been implemented within the
hidden layers of RLVECO. Also, 𝐿2 regularization (𝐿2 =
0.04) [7] and early stopping (shown via Table 10) [19] were
employed herein as addon regularization techniques to over-
come overfitting incurred during the training of RLVECO.
A mini-batch size of 256 was used for training, testing, and
validating because we want to ensure that sufficient patterns
are extracted by the model during training before its network
weights are updated.

Table 7: Categorization of actors using PubMed-Diabetes
dataset based on the reserved test sample - dataset vs models.

M
od

el

Metric PubMed-Diabetes Dataset

Po
in

ts

C1 C2 C3 𝜇

R
LV

E
C

O PC 0.76 0.83 0.84 0.81

6
RC 0.60 0.88 0.91 0.80
F1 0.67 0.86 0.87 0.80
AC 0.89 0.88 0.90 0.89
RO 0.92 0.94 0.95 0.94
SP 3300 7715 7170 6062

D
ee

pW
al

k PC 0.65 0.57 0.58 0.60

0
RC 0.15 0.67 0.71 0.51
F1 0.24 0.62 0.63 0.50
AC 0.81 0.67 0.68 0.72
RO 0.56 0.67 0.69 0.64
SP 821 1575 1548 1315

N
od

e2
Ve

c PC 0.74 0.47 0.49 0.57

0
RC 0.03 0.65 0.55 0.41
F1 0.05 0.55 0.52 0.37
AC 0.80 0.57 0.60 0.66
RO 0.51 0.58 0.59 0.56
SP 821 1575 1548 1315

SD
N

E
PC 0.65 0.43 0.74 0.61

0
RC 0.05 0.96 0.17 0.39
F1 0.10 0.59 0.27 0.32
AC 0.80 0.48 0.65 0.64
RO 0.52 0.56 0.56 0.55
SP 821 1575 1548 1315

LI
N

E

PC 0.48 0.42 0.44 0.45

0
RC 0.05 0.60 0.46 0.37
F1 0.08 0.50 0.45 0.34
AC 0.79 0.51 0.56 0.62
RO 0.52 0.53 0.54 0.53
SP 821 1575 1548 1315

Table 10: Early-stopping regularization against datasets

Dataset Early stopping
CiteSeer, Cora, Facebook
Page2Page, PubMed Diabetes,
Terrorists Relation, Zachary Karate

after 50 epochs

Internet-Industry Partnerships after 180 epochs

5 LIMITATIONS AND CONCLUSION
The benchmark models (baselines) evaluated herein were
executed using their default parameters. We were not able
to evaluate GCN [11] against Facebook-Page2Page, PubMed-
Diabetes, Internet-Industry-Partnership, and Zachary-Karate
datasets; because these aforementioned datasets do not pos-
sess individual vector-based feature set which is required by
the GCN model for input-data processing. Overall, RLVECO’s
remarkable performance with respect to the benchmarking
results herein is primarily attributed to the presence of a
biform RL/FL kernel.
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Table 8: Categorization of actors using Terrorists-Relationship
dataset based on the reserved test sample - dataset vs models.

M
od

el

Metric Terrorists-Relation Dataset

Po
in

ts

C1 C2 C3 C4 𝜇

R
LV

E
C

O PC 0.93 0.91 0.46 1.00 0.83

6
RC 0.97 0.97 0.42 0.97 0.83
F1 0.95 0.94 0.44 0.98 0.83
AC 0.95 0.98 0.89 0.99 0.95
RO 0.98 1.00 0.85 1.00 0.96
SP 1706 491 319 561 769

G
C

N

PC 0.94 0.74 0.67 0.96 0.83

5
RC 0.90 0.95 0.60 1.00 0.86
F1 0.92 0.83 0.63 0.98 0.84
AC 0.92 0.95 0.88 0.99 0.94
RO 0.98 0.99 0.91 1.00 0.97
SP 92 21 30 27 43

D
ee

pW
al

k PC 0.88 0.82 0.64 0.86 0.80

0
RC 0.90 0.86 0.53 0.93 0.81
F1 0.89 0.84 0.58 0.89 0.80
AC 0.88 0.96 0.86 0.96 0.92
RO 0.88 0.92 0.73 0.95 0.87
SP 92 21 30 27 43

N
od

e2
Ve

c PC 0.86 0.82 0.60 0.86 0.79

0
RC 0.88 0.86 0.50 0.93 0.79
F1 0.87 0.84 0.55 0.89 0.79
AC 0.86 0.96 0.85 0.96 0.91
RO 0.86 0.92 0.71 0.95 0.86
SP 92 21 30 27 43

LI
N

E

PC 0.82 0.82 0.58 0.92 0.79

0
RC 0.92 0.86 0.37 0.85 0.75
F1 0.87 0.84 0.45 0.88 0.76
AC 0.85 0.96 0.84 0.96 0.90
RO 0.84 0.92 0.65 0.92 0.83
SP 92 21 30 27 43

SD
N

E

PC 0.77 0.90 0.56 1.00 0.81

0
RC 0.92 0.86 0.30 0.85 0.73
F1 0.84 0.88 0.39 0.92 0.76
AC 0.81 0.97 0.84 0.98 0.90
RO 0.80 0.92 0.62 0.93 0.82
SP 92 21 30 27 43

The source codes for the classification of social actors
using RLVECO proposed herein can be reviewed via Mi-
crosoft’s GitHub software development version control plat-
form. Thus, this can be publicly accessed via: https://github.
com/bhevencious/RLVECN. Additionally, Table 11 herein
describes the organization of the code repository.

6 FUTURE WORK
We intend to expand RLVECO’s scope such that it can be
applied for resolving other open research problems in SNA.
Also, we are sourcing for additional baselines (benchmark
models) and real-world social network datasets for extensive
validation of RLVECO.
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Table 9: Categorization of actors using Zachary-Karate
dataset based on the reserved test sample - dataset vs models.

Model Metric Zachary-Karate Dataset Points
C1 C2 C3 C4 𝜇

R
LV

E
C

O PC 1.00 0.67 0.20 1.00 0.72
7RC 1.00 0.89 1.00 0.50 0.85

F1 1.00 0.76 0.33 0.67 0.69
AC 1.00 0.81 0.69 0.77 0.82
RO 1.00 0.83 0.83 0.75 0.85
SP 3 9 2 12 7

SD
N

E PC 0.00 0.50 0.00 0.60 0.28
2RC 0.00 0.50 0.00 1.00 0.38

F1 0.00 0.50 0.00 0.75 0.31
AC 0.86 0.71 0.86 0.71 0.79
RO 0.50 0.65 0.50 0.75 0.60
SP 1 2 1 3 2

LI
N

E PC 0.00 0.50 0.00 0.60 0.28
2RC 0.00 0.50 0.00 1.00 0.38

F1 0.00 0.50 0.00 0.75 0.31
AC 0.86 0.71 0.86 0.71 0.79
RO 0.50 0.65 0.50 0.75 0.60
SP 1 2 1 3 2

D
ee

pW
al

k PC 0.00 0.40 0.00 0.50 0.23
0RC 0.00 1.00 0.00 0.33 0.33

F1 0.00 0.57 0.00 0.40 0.24
AC 0.86 0.57 0.86 0.57 0.72
RO 0.50 0.70 0.50 0.54 0.56
SP 1 2 1 3 2

N
od

e2
Ve

c PC 0.00 0.00 0.00 0.25 0.06
0RC 0.00 0.00 0.00 0.33 0.08

F1 0.00 0.00 0.00 0.29 0.07
AC 0.86 0.29 0.86 0.29 0.58
RO 0.50 0.20 0.50 0.29 0.37
SP 1 2 1 3 2

Table 11: Description of source-code repository

Subject GitHub link/url
Home https://github.com/bhevencious?

tab=repositories
RLVECO for Node
Classification

https://github.com/bhevencious/
rlveco/blob/master/rlveco-
node_classification.py

RLVECO’s experi-
ment results

https://github.com/bhevencious/
rlveco/blob/master/eval_log.txt

Node-Classification
Baselines (DeepWalk,
LINE, Node2Vec,
and SDNE)

https://github.com/bhevencious/
Baselines_GraphEmbedding/blob/
master/fused_baseline_models.py

DeepWalk, LINE,
Node2Vec, and SDNE
experiment results

https://github.com/bhevencious/
Baselines_GraphEmbedding/blob/
master/eval_log.txt

Node-Classification
Baseline (GCN)

https://github.com/bhevencious/
Baselines_GraphEmbedding/blob/
master/kipf_gcn/gcnn_node_
classification.py

GCN experiment re-
sults

https://github.com/bhevencious/
Baselines_GraphEmbedding/blob/
master/kipf_gcn/eval_log.txt

https://github.com/bhevencious/RLVECN
https://github.com/bhevencious/RLVECN
https://github.com/bhevencious?tab=repositories
https://github.com/bhevencious?tab=repositories
https://github.com/bhevencious/rlveco/blob/master/rlveco-node_classification.py
https://github.com/bhevencious/rlveco/blob/master/rlveco-node_classification.py
https://github.com/bhevencious/rlveco/blob/master/rlveco-node_classification.py
https://github.com/bhevencious/rlveco/blob/master/eval_log.txt
https://github.com/bhevencious/rlveco/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
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