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ABSTRACT
Learning-to-rank technologies have been widely used for click-
through rate prediction tasks and successfully applied in scenarios
including web search, advertising, etc. However, users’ tendency
to click items with higher positions leads to bias problems in tradi-
tional learning-to-rank algorithms. There are two crucial problems
caused by using such biased data for training and validation, i.e. i)
inconsistency between offline evaluation and online performance,
and ii) performance dropping due to biased training. For evalua-
tion consistency problem, we conduct analysis to demonstrate its
relation towards the position bias problem and alleviate it by using
randomized data as validation data. To deal with biased training
data, most existing debiasing approaches calculate the bias at each
position based on the inverse propensity weighting techniques.
However, in complex search scenario where queries have different
numbers of retrieved items, click distributions and product styles,
the bias distribution over position is quite different for each indi-
vidual search request, hence can not be precisely captured using
simple position-based debiasing methods. In this paper, we propose
the Context-Aware Position Debiasing (CAPD) technique to predict
accurate bias (both positive bias and negative bias) of each request
and do pairwise debiasing on LambdaRank. Experiments demon-
strate that our CAPD technique outperforms existing debiasing
methods according to NDCG on unbiased randomized validation
data and click-through rate in online A/B test.
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1 INTRODUCTION
Learning-to-rank [13] (LTR) has been widely used in various do-
mains including search engines, online advertising, recommender
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systems etc. Existing algorithms of learning-to-rank include point-
wise approaches [14], pairwise approaches [2] and list-wise ap-
proaches [4]. Among the proposed algorithms, LambdaRank [3, 18]
is an effective method to optimize the Normalized Discounted Cu-
mulative Gain (NDCG) metric [10], which is widely used for evalu-
ating the performance of a ranking system. Despite their training
methodologies, most LTR methods are affected by the position bias
problem introduced by real online user behaviors, e.g., users tend
to click items presented in top positions, thus causing the position
bias problem [11]. Therefore, study of the position bias problem
serves as a fundamental research direction in learning-to-rank.

There are two key problems caused by using such biased data for
training and validation. The first one is the evaluation inconsistency
problem. When biased data is used for offline validation, which is
widely adopted in practice, the bias will lead to the inconsistency
between offline evaluation and online performance. The second is
the problem of biased training. A satisfying learning-to-rank model
should be able to distinguish between the position bias and actual
user preferences among the user behaviors. Otherwise, the trained
model would be a biased one which can not accurately capture user
preferences precisely.

In this paper, we analyze how position bias causes the incon-
sistency between offline evaluation and online performance. As a
result, traditional LambdaRank algorithm to optimize the offline
rankingmetrics of NDCGmight leads to a biasedmodel which is not
optimal online. And we show that using randomized data to evalu-
ate could achieve the consistency between NDCG offline and online
performance. However, result randomization intuitively degrades
the users’ search experience. So we only use limited randomized
data as our validation data.

To tackle the problem of biased training, researchers proposed
plenty works on training unbiasedmodels with biased data. Most ex-
istingworks are based on the inverse propensity weighting (IPW[7])
method, which treats the bias as a counterfactual effect. Such works
include IPW on SVM-Rank [12], selection bias estimation [17] and
unbiased LambdaMart [9]. All of these approaches conduct bias
estimation and assign a single constant bias for each position re-
gardless of the search request, assuming that position bias does not
change according to search requests. However, such assumption
does not always hold.

Context-aware position debiasing is further required when deal-
ing complex search scenarios. Specifically, complex search context
can be consist of target search domains/scenarios, different user
groups, display templates etc. Taking scenarios as an example, user
may pay more attention to each displayed item when search for hol-
iday trip hotels , while only browsing the first few candidates when
search for nearby fast foods. Moreover, there are plenty application-
related display variations which can also affect the actual position
bias that user experiences, e.g. display advertisements, promotion
campaign cards, related search blocks, etc. (demonstrated in Figure
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Figure 1: Demonstration of Display Variations in Search.

1). Therefore, the position bias distribution may be quite different
under various search context, and context-aware position debiasing
is required for better conducting the unbiased training in complex
search scenarios.

In this paper, we propose Context-Aware Position Debiasing
(CAPD) by following the basic idea of Inverse Propensity Weight-
ing and considering the contextual information for conducting
position debiasing. Learning from the pairwise debiasing method
in unbiased LambdaMart [9], in which introduce the positive bias
of clicked data and negative bias of unclicked data, we propose two
bias estimation models in CAPD, one is for positive bias estimation
and the other is for negative bias estimation. Specifically, we con-
duct a query-position-dependent model with pairwise loss training
on randomized data to predict bias distribution on each request. And
then we conduct the pairwise debiasing on LambdaRank with bias
estimated by models. Extensive experiments demonstrate the effec-
tiveness of our CAPD method, which out-performs all comparing
bias estimation methods. CAPD has also been successfully adopted
for Meituan search, one of the leading online-to-offline (O2O) e-
commerce platform in China, achieving significant improvement
on online click-through rates.

Our primary contributions of this paper can be summarized as
follows:

• We analyze how position bias problem causes the inconsis-
tency between offline evaluation and online performance
and propose the unbiased validation method with random-
ized data.

• We propose a Context-Aware Position Debiasing (CAPD)
technique to conduct unbiased training in complex search
scenarios. CAPD includes two steps: i) First we conduct two
query-position-dependent models with pairwise loss (one is
for positive bias estimation and the other is for negative bias
estimation), where bias distribution could be estimated with
different context pattern. ii) Then we conduct the pairwise
debiasing on LambdaRank with positive bias and negative
bias.

• We verify the effectiveness of the Context-Aware Position
Debiasing (CAPD) technique through rigorous offline exper-
iments and online experiments. And performance online is
consistent with offline evaluation on randomized data but
inconsistent with offline evaluation on regular data, which
is correspond with our analysis of inconsistency problem.

For the rest of this paper, we first introduce the related works in
Sec. 2 and formally define the problem in Sec. 3. In Sec. 4, we present
the details of CAPD proposed in this paper. Extensive experiments
using real search data is explained in Sec. 5. Finally, conclusions
and future works are discussed in Sec. 6.

2 RELATEDWORK
In search systems, a ranker is usually defined as a function of feature
vector based on a query item pair. Given a query, the retrieved
items are ranked base on their scores given by the ranker. There are
many algorithms proposed in previous work for learning-to-rank,
including point-wise algorithm[14], pairwise algorithm[2] and list-
wise algorithm[4]. The key issue of ranking in search system is
to determine the orders of items in each request, so that the score
distribution in each request is much more important than the global
score distribution. Thus, pairwise loss and list-wise loss worksmuch
better than point-wise loss in learning-to-rank.

In most learning-to-rank algorithms, the training data is col-
lected and labeled by users’ click behaviour online. Clicked items
are labeled as positive samples and unclicked items are labeled as
negative samples in each request. Previous work of Joachims et al.
[11] and Yue et al. [19] studies users’ tendency of clicking items
with good positions and the consequence of position bias problem.
Several click models have been developed to solve the bias problem
including Position Based Model(PBM) [15], Cascade Model(CM)
[6], User Browsing Model(UBM) [8], Dynamic Bayesian Network
Model(DBN) [5], etc.

Performance of learning-to-rank approaches is measured by
ranking metrics such as Normalized Discounted Cumulative Gain
(NDCG) [10], Mean Average Precision(MAP)[1], Mean Reciprocal
Rank(MRR)[16], etc. In search systems, users care more about the
top results, so that we usually use NDCG as our offline ranking
metric. Previous work of LambdaRank algorithm[3, 18] is efficient
to optimize NDCG. Thus our work is based on LambdaRank and
use NDCG as our ranking metric.

Hu et al. [9] proposed an unbiased pairwise learning-to-rank
algorithm based on LambdaRank, in which introduce the positive
bias of clicked data and negative bias of unclicked data. The positive
bias 𝑡+

𝑖
and negative bias 𝑡−

𝑗
are defined as

𝑃 (𝑐+𝑖 |𝑥𝑖 ) = 𝑡+𝑖 𝑃 (𝑟
+
𝑖 |𝑥𝑖 )

𝑃 (𝑐−𝑗 |𝑥 𝑗 ) = 𝑡−𝑗 𝑃 (𝑟
−
𝑗 |𝑥 𝑗 )

(1)

at a clicked position 𝑖 and an unclicked position 𝑗 in Unbiased Lamb-
daRank. And we notice that a reasonable estimation result should
be the 𝑡+

𝑖
decreasing with 𝑖 and the 𝑡−

𝑗
increasing with 𝑗 , which is

contradictory to the result in Unbiased LambdaMart[9] on 𝑡−
𝑗
. We

verifies the effectiveness of pairwise debiasing on LambdaRank,
and fix the negative bias problem in this paper.

Wang et al. [17] proposed several bias estimation methods in-
cluding generalized bias model of training n logistic regression
models, each for a single position. However, in complicate search
scenario, such as Meituan Search, traditional bias estimation meth-
ods do not work well because of the significant difference on bias
distribution between queries and the discontinuous item positions
of each request. In such search scenario, bias distribution in each
request is much more important than the global bias distribution.
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Thus, in this paper, two context-aware bias estimation models with
pairwise loss are proposed, one is for positive bias estimation and
the other is for the negative bias estimation, in which focus more
on the bias distribution of each request. This model predicts the
bias of each position in a request, and it fits well when request
has discontinuous item positions because the discontinuity appears
in training data and predicting data both. Experiments show that
these two bias estimation models achieve significant improvement
of online click-through rate.

3 PROBLEM FORMULATION
In this section, we review the general setting of pairwise learning-
to-rank algorithm LambdaRank. We then propose the inaccuracy
of evaluation when we train the model with online data, which is
biased without considering the show position of items. Furthermore,
we propose some unbiased validation methods.

3.1 Pairwise Learning-to-Rank: LambdaRank
Let𝑄 = (𝑞, {𝑥1, ..., 𝑥𝑛}) denote a request 𝑞 and its set of result items.
Let 𝐷 denote the set of query-wise data 𝑄 . The goal of learning-to-
rank is to find a ranking model 𝑓 (𝑥) to minimize the loss function
defined as:

𝐿(𝑓 ) =
∑
𝑄 ∈𝐷

𝑙 (𝑄, 𝑓 ) (2)

where 𝑙 (𝑄, 𝑓 ) is the loss of 𝑓 (𝑥) applied to request 𝑄 . We then use
the 𝑦𝑖 as the label and 𝑦𝑖 = 𝑓 (𝑥𝑖 ) as the score for the i-th item 𝑥𝑖 . A
commonly used pairwise loss function is the logistic loss

𝑙 (𝑄, 𝑓 ) =
∑

𝑦𝑖>𝑦 𝑗

𝑙𝑜𝑔2 (1 + 𝑒−𝜎 (𝑦𝑖−𝑦 𝑗 ) ) (3)

where 𝜎 is a hyper-parameter.
For ranking effectiveness, the evaluation metric in this paper

is NDCG, which is commonly used in learning to rank tasks. The
NDCG metric for a single query over the item list ranked by de-
creasing scores 𝑦𝑖 is defined as

𝑁𝐷𝐶𝐺 =
1

𝑚𝑎𝑥𝐷𝐶𝐺

𝑛∑
𝑖=1

2𝑦𝑖 − 1
𝑙𝑜𝑔2 (𝑖 + 1) (4)

LambdaRank uses the logistic loss and adapts it by reweighing
each item pair by Δ𝑁𝐷𝐶𝐺 so that the lambdaLoss is defined as

𝑙 (𝑑, 𝑓 ) =
∑

𝑦𝑖>𝑦 𝑗

Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗)𝑙𝑜𝑔2 (1 + 𝑒−𝜎 (𝑦𝑖−𝑦 𝑗 ) ) (5)

3.2 Inconsistency Between Offline Evaluation
and Online Performance

An observation is that the data set 𝐷 collected from the online click
log is biased as users tend to click items ranked at higher positions.

When there is a fixed ranking strategy online, the model trained
from 𝐷 tends to maintain the ranking of that strategy. A model
performing better online may get a smaller NDCG on the validation
data from 𝐷 . Actually, in Meituan Search Scenario, inconsistency
between offline evaluation and online performance appears often
when doing a model upgrade (e.g. Manual rules to GBDT models,
GBDT models to deep models) or introducing some new features.

Such inconsistency makes the offline evaluation useless. With
the inconsistency, one have to evaluate all ranking models online,
which is very costly.

We use an example to better explain the observation of inconsis-
tency between offline evaluation and online performance. Assume
that we have online strategy (𝑥1, 𝑥2), in which 𝑥1 presented before
𝑥2, and offline strategy (𝑥2, 𝑥1). Let 𝑟+𝑖 represent that item 𝑥𝑖 is
relevant. Let 𝑐+

𝑖
represent that item 𝑥𝑖 is clicked. We assume that

the click probability is proportional to the relevance probability at
each position, where the ratio 𝑡+

𝑖
is the bias at a click position 𝑖 . [9]

So we have
𝑃 (𝑐+𝑖 |𝑥𝑖 ) = 𝑡+𝑖 𝑃 (𝑟

+
𝑖 |𝑥𝑖 ) (6)

Assuming there are n exposure data online with online strategy
(𝑥1, 𝑥2), we have 𝑡+1 𝑃 (𝑟

+
1 |𝑥1)𝑛 clicks of item 𝑥1 and 𝑡+2 𝑃 (𝑟

+
2 |𝑥2)𝑛

clicks of item 𝑥2. And we have𝑚 = 𝑛(𝑡+1 𝑃 (𝑟
+
1 |𝑥1) + 𝑡+2 𝑃 (𝑟

+
2 |𝑥2)) of

clicked requests. So that the NDCG of online strategy (𝑥1, 𝑥2) is

𝑁𝐷𝐶𝐺 (𝑥1, 𝑥2) = 1
𝑚

(𝑡+1 𝑃 (𝑟
+
1 |𝑥1) +

𝑡+2 𝑃 (𝑟
+
2 |𝑥2)

log2 3
) (7)

For the offline strategy (𝑥2, 𝑥1), because the validation data is from
online strategy, the click number of item 𝑥𝑖 does not change. So we
have NDCG of offline strategy (𝑥2, 𝑥1) is

𝑁𝐷𝐶𝐺 (𝑥2, 𝑥1) = 1
𝑚

(𝑡+2 𝑃 (𝑟
+
2 |𝑥2) +

𝑡+1 𝑃 (𝑟
+
1 |𝑥1)

log2 3
) (8)

And we assume that 𝑃 (𝑟+2 |𝑥2) > 𝑃 (𝑟+1 |𝑥1) which means offline

strategy (𝑥2, 𝑥1) is a better strategy. Once
𝑡+1
𝑡+2

>
𝑃 (𝑟+2 |𝑥2)
𝑃 (𝑟+1 |𝑥1)

, we could
get𝑁𝐷𝐶𝐺 (𝑥2, 𝑥1) < 𝑁𝐷𝐶𝐺 (𝑥1, 𝑥2), which could have an opposite
performance when we use strategy (𝑥2, 𝑥1) online.

3.3 Unbiased Validation Methods
We propose two unbiased validation methods and show how they
fix the inconsistency problem.

3.3.1 Weighted NDCG. Inverse Propensity Weighting[7] approach
can be adopted to help overcome position bias problem and fix the
inconsistency between online and offline. We define a weighted
NDCG using the bias ratio of each request. For the clicked position
𝑖 of request data 𝑄 , we define the weight𝑤𝑄 as the normalization
of bias 𝑡+

𝑖
. and we define the weighted NDCG of a single request as:

1
𝑤𝑄

𝑁𝐷𝐶𝐺𝑄 . And weighted NDCG of the strategy would be:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝐷𝐶𝐺 =

∑
𝑄 ∈𝐷

1
𝑤𝑄

𝑁𝐷𝐶𝐺𝑄∑
𝑄 ∈𝐷

1
𝑤𝑄

(9)

Reviewing the example before, we could get the weighted NDCG
of online and offline strategy as follows:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝐷𝐶𝐺 (𝑥1, 𝑥2) = 1
𝑚

(𝑃 (𝑟+1 |𝑥1) +
𝑃 (𝑟+2 |𝑥2)
log2 3

)

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝐷𝐶𝐺 (𝑥2, 𝑥1) = 1
𝑚

(𝑃 (𝑟+2 |𝑥2) +
𝑃 (𝑟+1 |𝑥1)
log2 3

)
(10)

And we have 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝐷𝐶𝐺 (𝑥1, 𝑥2) < 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝐷𝐶𝐺 (𝑥2, 𝑥1)
which would be consistent with online performance.

However, the accuracy of weighted NDCG depends heavily on
𝑡+
𝑖
of the bias estimation. A model which fits the weighted NDCG
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would get a higher weighted NDCG in validation. Thus we need
NDCG of randomized data for double check.

3.3.2 Result Randomization. We have explained that the inconsis-
tency between online and offline is due to the biased display online.
In the example of Figure 1, if we show the random ranking of half
(x1,x2) and half (x2,x1) online, the NDCG of two strategies on the
randomized data would also be

𝑁𝐷𝐶𝐺 (𝑥1, 𝑥2) = 1
𝑚

(𝑃 (𝑟+1 |𝑥1) +
𝑃 (𝑟+2 |𝑥2)
log2 3

)

𝑁𝐷𝐶𝐺 (𝑥2, 𝑥1) = 1
𝑚

(𝑃 (𝑟+2 |𝑥2) +
𝑃 (𝑟+1 |𝑥1)
log2 3

)
(11)

Thus in this paper, we use a randomized top-N data setℜ as the
validation data set and do the unbiased training on the regular data
set 𝐷 .

4 UNBIASED LEARNING-TO-RANKWITH
CONTEXT-AWARE

In this section, we show how to conduct pairwise debiasing on the
LambdaRank.What’s more, our search scenario is quite complicated
so that for different request, even at the same position, the bias
could be very different. Thus we propose some effective methods
to estimate bias with context-aware.

4.1 Inverse Propensity Weighting on
LambdaRank

Reviewing the LamdaRank algorithm [18] with the lambdaLoss
which is defined as Eq.5, the lambda gradient 𝜆𝑖 of item 𝑥𝑖 is calcu-
lated using all pairs of the other items with respect to the request
Q

𝜆𝑖 =
∑

𝑗 :(𝑥𝑖 ,𝑥 𝑗 ) ∈𝑄
𝜆𝑖 𝑗 −

∑
𝑗 :(𝑥 𝑗 ,𝑥𝑖 ) ∈𝑄

𝜆 𝑗𝑖 (12)

𝜆𝑖 𝑗 =
−𝜎

1 + 𝑒𝜎 (𝑦𝑖−𝑦 𝑗 )
|Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗) | (13)

where 𝜆𝑖 𝑗 is the lambda gradient defined on a pair of item 𝑥𝑖 and
𝑥 𝑗 .

We use the weightedNDCG(Eq.9) instead of NDCG(Eq.4) to be
our optimization target, which infers the query-level debiasing on
lambda gradient.

4.1.1 Query-level debiasing. We defined the bias ratio 𝑡+
𝑖
as Eq.6.

Thus the query-level debiasing of LambdaRank is to weight the
lambda gradient 𝜆𝑖 as

𝜆𝑖 =
1
𝑡+
𝑖

(
∑

𝑗 :(𝑥𝑖 ,𝑥 𝑗 ) ∈𝑄
𝜆𝑖 𝑗 −

∑
𝑗 :(𝑥 𝑗 ,𝑥𝑖 ) ∈𝑄

𝜆 𝑗𝑖 ) (14)

when there is a click on the 𝑖𝑡𝑒𝑚𝑖 of request 𝑄 .
This method fits well when there is a single click per request. But

in Meituan Search, requests with multiple clicked items account
for half of clicked requests. Thus we need item-level debiasing.

4.1.2 Item-level debiasing. Consider the pair-wise lambda gradient
𝜆𝑖 𝑗 defined on the pair of clicked item 𝑥𝑖 and unclicked item 𝑥 𝑗 .
For the clicked item 𝑥𝑖 , the weight of 𝜆𝑖 𝑗 should be different with

different unclicked item 𝑥 𝑗 . Reviewing the positive bias ratio 𝑡+𝑖 in
Eq.6, we define the negative bias ratio 𝑡−

𝑗
as

𝑃 (𝑐−𝑗 |𝑥 𝑗 ) = 𝑡−𝑗 𝑃 (𝑟
−
𝑗 |𝑥 𝑗 ) (15)

Thus we have the pairwise weighted lambda gradient [9]

𝜆𝑖 =
∑

𝑗 :(𝑥𝑖 ,𝑥 𝑗 ) ∈𝑄

ˆ𝜆𝑖 𝑗 −
∑

𝑗 :(𝑥 𝑗 ,𝑥𝑖 ) ∈𝑄

ˆ𝜆 𝑗𝑖 (16)

ˆ𝜆𝑖 𝑗 =
𝜆𝑖 𝑗

𝑡+
𝑖
𝑡−
𝑗

(17)

We notice that 𝑡+
𝑖
is decreasing with 𝑖 and the 𝑡−

𝑗
is increasing

with 𝑗 . The difference between our work and Unbiased LambdaMart
[9] is that we use randomized data to estimate 𝑡+

𝑖
and 𝑡−

𝑗
. The nega-

tive bias 𝑡−
𝑗
learned from the algorithm in Unbiased LambdaMart

[9] is decreasing with 𝑗 , which is contradict to the definition of
negative bias.

4.2 Bias Estimation
Our application Meituan Search Engine serves a very complicated
scenario and the bias distribution is quite different for each request.
For example, different queries has different number of recall items.
And for the query words of brand with exact intent, the items are
similar and the clicks are focus on the head positions. For the query
words of address, the clicks distribution are more dispersed. What’s
more, devices and display styles also affect bias distributions a lot.

We do the bias estimation on a randomized top30 data because
clicks after position 30 is very rare. The distribution of clicks on
randomized data is credible for bias estimation while the clicks on
regular data is more concentrated on head positions because they
have more relative items.

4.2.1 Bias Estimation in Complex Search Scenario. The basic idea
of doing bias estimation in complex search scenario is to partition
requests into segments and estimate the click distributions for each
segment.

In our application, the most important feature affecting the bias
distribution is the view-depth of each request. An other important
feature is the query intention, which affects the item distribution. In
Figure2 and Figure3 we could see how these two factors influence
the click distribution.

Thus we calculate the click distribution on each view-depth (e.g.
view-depth = 2,3,4..,29,30+) and on each query intention (e.g. brand,
address, hotel, etc.). And we have the bias 𝑡+

𝑖
and 𝑡−

𝑗
at specific

view-depth and query intention as

𝑡+𝑖 ∝ 𝑃 (𝑐𝑙𝑖𝑐𝑘 |𝑝𝑜𝑠 = 𝑖, 𝑣𝑖𝑒𝑤 − 𝑑𝑒𝑝𝑡ℎ, 𝑞𝑢𝑒𝑟𝑦𝐼𝑛𝑡𝑒𝑛𝑡)
𝑡−𝑗 ∝ 1 − 𝑃 (𝑐𝑙𝑖𝑐𝑘 |𝑝𝑜𝑠 = 𝑖, 𝑣𝑖𝑒𝑤 − 𝑑𝑒𝑝𝑡ℎ, 𝑞𝑢𝑒𝑟𝑦𝐼𝑛𝑡𝑒𝑛𝑡) (18)

What’s more, in our training data set, some queries have advertise-
ment or card insertions before items and in our ranking systems we
only rank the items(e.g. Figure 1). Thus we need to do the query-
wise normalization instead of normalization of each segment. And
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Figure 2: Illustration of CTR at each position of different
query intention.

Figure 3: Illustration of CTR at each position of different
view-depth.

we define the normalized bias as

𝑤+
𝑖 =

𝑡+
𝑖

max𝑥𝑖 ∈𝑄 (𝑡+
𝑖
)

𝑤−
𝑗 =

𝑡−
𝑗

max𝑥 𝑗 ∈𝑄 (𝑡−
𝑗
)

(19)

And we do the pairwise inverse propensity weighting on lambda
gradient as

ˆ𝜆𝑖 𝑗 =
𝜆𝑖 𝑗

𝑤+
𝑖
𝑤−
𝑗

(20)

4.2.2 Bias EstimationModel. An other challenge inMeituan Search
is that training data in our search scenario might not be continu-
ous with positions. Card blocks and advertisements are commonly
inserted in Meituan Search and the ranking models only rank the

items of each request. Figure 1 illustrate the difference between
traditional training data and Meituan Search training data. The
insertions have some regular patterns for different query words.
Generalized bias estimation models [17] of independent model
at each position cannot learn about the display pattern of each
request. Thus, we propose a query-position-dependent bias estima-
tion model which also consider the display pattern of each request.
We defined the bias prediction problem as follows:

Definition 4.1. Position Bias Prediction. Given a request 𝑄 =

(𝑞, {𝑥1, ..., 𝑥𝑛} and the position 𝑖 of each item 𝑥𝑖 , the problem of
Position Bias Prediction is to estimate the click probability and
unclick probability of the item at position 𝑖 when we show the set
of items in a random order in each request 𝑄 .

We use the queries in the randomized data ℜ as our training
data. And different from training n models for n positions in [17],
we train one model with pairwise loss for all positions to estimate
the click probability. Because in our scenario, we concerned more
about the bias distribution in each single request. For each request,
positions of exposure are quite different in Meituan Search, so one
model for one position is unable to satisfy the accurate estimation
of bias. Thus we include the positions of items to our features and
describe our approach as follows:

• Data formulation: For each request 𝑄 = (𝑞, {𝑥1, ..., 𝑥𝑛} in
randomized data set ℜ, we define the 𝑦𝑖 as the label of each
item 𝑥𝑖 and the 𝑦𝑖 = 1 when 𝑥𝑖 is clicked and 𝑦𝑖 = 0 when 𝑥𝑖
is not clicked.

• Features: For each request 𝑄 , we construct a feature vector
𝑣 (𝑄). In our setting, the feature can be query-dependent(e.g.
query intention, length of query) or user-dependent(e.g. de-
vices, average click position of the user) or item-set-dependent(e.g.
recall-num of the item list, view-depth of the item list). And
the feature vector of each item 𝑥𝑖 in request 𝑄 is the con-
catenation of (𝑣 (𝑄), 𝑖), which is only depend on the request
and item position.

• Training: The goal of our bias estimation model 𝑓 (𝑥) is to
minimize the pairwise loss function (logistic loss)

𝑙 (𝑄, 𝑓 ) =
∑

𝑦𝑖>𝑦 𝑗

𝑙𝑜𝑔2 (1 + 𝑒−𝜎 (𝑦𝑖−𝑦 𝑗 ) ) (21)

And we train a nn model with logistic gradient for each pair

𝐺𝑟𝑎𝑑 =
−𝜎

1 + 𝑒𝜎 (𝑦𝑖−𝑦 𝑗 )
(22)

• Prediction: The output of the model passes through a sig-
moid layer so that the predict value is between 0 and 1. We
define the 𝑃 (𝑐𝑡+

𝑖
) of request Q as 𝑡+

𝑖
= 𝑓 (𝑣 (𝑄), 𝑖), and the

normalized bias𝑤+
𝑖
=

𝑡+𝑖
max𝑥𝑖 ∈𝑄 (𝑡+

𝑖
)

Similarly to train the model of positive bias 𝑡+
𝑖
, we also train

a model of negative bias 𝑡−
𝑗
, in which just exchange the labels as

the 𝑦 𝑗 = 0 when 𝑥 𝑗 is clicked and 𝑦 𝑗 = 1 when 𝑥 𝑗 is not clicked.
We define this model as 𝑓 − (𝑣 (𝑄), 𝑗) and we have the negative bias
𝑡−
𝑗

= 𝑓 − (𝑣 (𝑄), 𝑗) of request Q at position 𝑗 . Thus we have the

normalized negative bias𝑤−
𝑗
=

𝑡−𝑗
max𝑥𝑗 ∈𝑄 (𝑡−

𝑗
) .

Finally we use the bias estimated from models to do the pairwise
inverse propensity weighting on lambda gradient as Eq.20
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Table 1: Features used in CAPD

Feature Description

totalCount total count of recall items in each request
queryIntent type id of the query(brand=0, address=1,...)

queryClickPosAvg average click position of the query
queryLength length of query
viewdepth user’s view depth of the request

device iPhone, iPad, Android...
itemPosition position of the item

offset page offset of the item

5 EXPERIMENTS
In this section, we conduct experiments on two steps of Context-
Aware Position Debiasing technique. One is the experiment set of
bias estimation methods, in which we compare the effectiveness of
global bias estimation method, statistic bias estimation method on
different segment, and a query-position-dependent bias estimation
model. The other is the experiment set of debiasing methods includ-
ing query-level debiasingmethod, item-level debiasingmethodwith
only positive bias, and item-level debiasing method with positive
bias and negative bias.

Randomized data is used as our validation data and we also pay
attention to the NDCG on regular data and CTR online, which
shows that the NDCG in randomized data is positively correlated
with the online click-through rate while the NDCG in regular data
is not.

5.1 Experimental Design
We conduct the experiments using search log from Meituan search.
The dataset 𝐷 covers 15M users, 80M items, and 200M impressions
among them. The data is segmented into training data 𝐷𝑡 and
evaluation set 𝐷𝑒 according to date.

To conduct the unbiased validation and to estimate bias in CAPD,
we also collect a randomized data set ℜ. For each request, we give
users a random ranking of top 30 items with a probability of one
in a thousand. And we collected 300K clicked queries of random
ranking in same time period of regular data set.

Both regular and randomized validation sets 𝐷𝑒 and ℜ are used
during evaluation to demonstrate the correlation/inconsistency
between different offline evaluation settings and the actual online
performance.

We perform two sets of experiments on unbiased LambdaRank.
One is to compare the effectiveness of different bias estimation
methods. The other is to compare different debiasing methods on
LamdaRank. What’s more, we verify the difference of NDCG be-
tween regular data and randomized data and confirm our analysis
on the consistency between NDCG on randomized data and click-
through rate online.

The experiment of different debiasing methods is summarized
in Table 3 and we use the segmented statistic bias in Table 2 as our
bias estimation method. The result shows that item-level debiasing
with 𝑡+

𝑖
and 𝑡−

𝑗
has the best performance on randomized data.

Thus we conduct the experiment of different bias estimation
methods in Table 2 on item-level debiasing with 𝑡+

𝑖
and 𝑡−

𝑗
, which

Table 2: List of Bias Estimation Methods

Estimation Method Description

Global Statistic The bias is estimated for each position
globally

Segmented Statistic
The bias is estimated for each position
per segment with different view-depth
and queryIntent

Query-wise Normal-
ization of Segmented
Statistic

The bias is estimated for per segment
and normalized in each request

Query-wise Bias Esti-
mation Model

The positive bias and negative bias are
estimated by two NN models with pair-
wise logistic loss and normalized in each
request.

Table 3: List of debiasing methods.

Debiasing Method Description

No Weight
No bias correction on LambdaRankwith
regular data. This servers as our base-
line.

Query-level Debiasing

We use the normalized bias weight
𝑤𝑄 =

𝑡+𝑖
max𝑥𝑖 ∈𝑄 (𝑡+

𝑖
) of the first clicked

item 𝑥𝑖 in a request𝑄 . And we do the in-
verse propensity weighting on lambda
gradient as 𝜆𝑖 = 𝜆𝑖

𝑤𝑄

Item-level Debiasing
with only 𝑡+

𝑖

We use the normalized bias weight
𝑤+
𝑖

=
𝑡+𝑖

max𝑥𝑖 ∈𝑄 (𝑡+
𝑖
) of the each clicked

item 𝑥𝑖 in a request𝑄 . And we do the in-
verse propensity weighting of pairwise
lambda gradient as ˆ𝜆𝑖 𝑗 =

𝜆𝑖 𝑗
𝑤+
𝑖

Item-level Debiasing
with 𝑡+

𝑖
and 𝑡−

𝑗

We use the normalized bias weight
𝑤+
𝑖

=
𝑡+𝑖

max𝑥𝑖 ∈𝑄 (𝑡+
𝑖
) and 𝑤−

𝑗
=

𝑡−𝑗
max𝑥𝑗 ∈𝑄 (𝑡−

𝑗
) of the each clicked item

𝑥𝑖 and unclicked item 𝑥 𝑗 in a request
𝑄 . And we do the inverse propensity
weighting of pairwise lambda gradient
as ˆ𝜆𝑖 𝑗 =

𝜆𝑖 𝑗
𝑤+
𝑖
𝑤−

𝑗

means we need to estimate 𝑡−
𝑗
in this experiment. What’s more,

Table 1 shows the features we used in bias estimation model.

5.2 Experimental Results
In this section, we present the results on two sets of experiments.
The ranking metrics of NDCG are calculated on regular data 𝐷𝑒

and randomized data ℜ for each experiment.
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Table 4: Comparison of different bias estimation methods

Estimation Method NDCG onℜ NDCG on 𝐷𝑒 CTR online

Base with noDebiasing 0.77472 0.81023 - BASE -
Global Statistic 0.77457 0.80891 -2.0‰

Segmented Statistic 0.77479 0.80922 +0.5‰
Query-wise Normalization of Segmented Statistic 0.77487 0.80958 +1.0‰
Query-Position-Dependent Bias Estimation Model 0.77514 0.80932 +2.3‰

Table 5: Comparison of different debiasing methods

Debiasing Method NDCG onℜ NDCG on 𝐷𝑒 CTR online

Base with noDebiasing 0.77472 0.81023 - BASE -
Query-level Debiasing 0.77476 0.80933 +0.2‰

Item-level Debiasing with 𝑡+
𝑖

0.77497 0.80951 +1.5‰
Item-level Debiasing with 𝑡+

𝑖
and 𝑡−

𝑗
0.77514 0.80932 +2.3‰

In the experiment of bias estimation methods, we estimate both
𝑃 (𝑡+

𝑖
) and negative bias 𝑡−

𝑗
for item-level debiasing. Table 4 sum-

marized the comparison of different bias estimation methods. One
observation is that the global bias statistic method cannot beat the
base because bias distribution is quite different in each request
of complex search scenario in Meituan App and the inaccuracy
of bias estimation could mislead the unbiased training. The result
shows that the query-position-dependent bias estimation model
has the best performance on randomized data ℜ and achieves a
2.3‰improvement on CTR online.

In the experiments of debiasing methods, we use a same set of
𝑡+
𝑖
and 𝑡−

𝑗
estimated by the query-position-dependent bias estima-

tion model for variable control. Table 5 summarized the compar-
ison of different debiasing methods. Results verifies that our bias
estimation model works well in each debiasing methods. The re-
sult of item-level debiasing with only 𝑡+

𝑖
has a 1.5‰improvement

on CTR. Further more, the item-level debiasing with 𝑡+
𝑖
and 𝑡−

𝑗

has the best performance on randomized data ℜ and achieves a
2.3‰improvement on CTR online.

Another observation of our experiments is that every debiasing
method achieves lower NDCG on regular data𝐷𝑒 but higher NDCG
on randomized dataℜ than base. And two sets of experiments both
verifies the consistency between NDCG on randomized data and
CTR online, which is correspond with our analysis of inconsistency
problem.

We conclude our findings of the experiments as follows:

• The item-level debiasing method with 𝑡+
𝑖
and 𝑡−

𝑗
achieves a

better performance rather than other debiasing methods.
• The traditional bias estimation methods do not work well in
complex search scenario.

• The query-position-dependent bias estimation model with
context-aware achieves the best performance of all bias esti-
mationmethods on randomized dataℜ and a 2.3‰improvement
on CTR online.

• Debiasing methods usually achieve a better performance
on randomized data ℜ but a worse performance on regular

data 𝐷𝑒 . And the performance on randomized data ℜ is
consistent with CTR online while the the performance on
regular data 𝐷 is not.

6 CONCLUSION
In this paper, we target at alleviating position bias problem in
learning-to-rank for complex search scenarios. Position bias affects
the training process of all kinds of learning-to-rank models, leading
to the evaluation inconsistency problem and sub-optimal ranking
models. To alleviate the inconsistency problem, we introduce the
weighted NDCG method and ranking list randomization method.
And we use the randomized data as our validation data set in this
paper. For unbiased training, existing debiasing techniques do not
take contextual information into consideration, thus can not capture
context-aware biases in complex search scenarios. To alleviate such
problems, we propose a context-aware position debiasing method,
which is a query-position-dependent bias estimation model that
could capture the patterns of context(e.g. display templates, target
search domains, users’ preference). Furthermore, we verified the
effectiveness of pairwise debiasing method proposed in Unbiased
LambdaMart [9] and fix the negative bias by training a negative bias
estimation model on a randomized data set. Finally, experimental
results demonstrate that evaluation on randomized data is more
consistent with the online performance than using biased validation
data. Both offline and online experiments indicate that the CAPD
method out-performs existing debiasing methods under a complex
search setting. An absolute improvement of 2.3‰on online click-
through rate is achieved in Meituan search scenario.
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