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ABSTRACT 

Deep Learning is a machine learning method based on neural 

network architectures with multiple layers of processing units. It 

has been successfully applied to a number of data mining problems, 

particularly in the areas of image recognition and natural language 

processing. Deep learning for anomaly detection is an active and 

ongoing research topic. Supervised anomaly detection methods 

emphasise learning feature representations from known anomalies 

types. However, supervised approaches do not scale well to large 

data sets and may be unable to generalise well to unknown anomaly 

types. To counteract this, unsupervised learning techniques are 

often implemented which operate without labelled anomaly data, 

such unsupervised approaches do not utilise the sparse amount of 

normal data which is often easily available. This paper introduces 

a novel anomaly detection framework to address these problems. 

Instead of learning anomaly representations from known anomaly 

types or from unsupervised models, our method leverages a small 

number of labelled normal (positive) data instances as well as 

unlabelled instances for training using Positive and Unlabelled 

(PU) learning as a pre training step to an anomaly detector based 

on Generative Adversarial Networks (GAN) model. Initial 

comparative analysis was undertaken between the proposed 

approach and a one class SVM. 

CCS CONCEPTS 

• Computing methodologies → Anomaly detection; Deep learning; 

Semi-supervised learning settings. 
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1 INTRODUCTION 

Anomalies may be defined as data instances which deviate 

significantly from the normal expected behaviours for the dataset, 

anomaly detection may therefore be defined as the recognition of 

these deviations. Anomaly detection has important applications 

across a number of domains including detecting network attacks in 

cybersecurity, fraudulent transactions in finance, and diseases in 

healthcare.  

Traditionally statistical methods such as control charts have 

been applied to anomaly detection. However, these methods are 

unable to deal with Big Data generated by modern systems. And 

research has begun to exploit machine learning to overcome these 

shortcomings. Multiple anomaly detection methods have been 

proposed, but there are many challenges. [1], [2] These can be 

complicated by the difficulty in acquiring labelled anomaly data for 

training, which is often expensive or impossible to obtain.  

Anomalies often demonstrate different interclass behaviours, 

meaning that anomalies types may significantly differ from each 

other, this poses significant challenges to supervised classification 

which assumes that data instances within each class are similar to 

each other. Furthermore, anomalies may sometimes display 

dynamic behaviour, where the normal behaviour evolves. 

Therefore, there are often Inaccurate or “soft” boundaries between 

the anomalous and normal behaviour. This implies that an anomaly 

detection system should ideally incorporate a degree of continual 

learning in their frameworks to overcome these challenges. 

Deep anomaly Detection (DAD) methods have been proposed 

as a solution and have been shown to be generally more accurate 

than semi-supervised and unsupervised models. However, they still 

require accurate lager amounts of normal and anomalous instances 

for training. As a result, hybrid semi supervised one-class learning 

methods become more appealing.  

Inspired by these challenges, we propose a novel advancement 

to the current two step anomaly detection approach. Firstly, 

incorporating a PU pre-training stage for input, which is a semi-

supervised learning method requiring no labelling of anomalies in 

the training process. Secondly, we incorporate GAN model into the 

framework to tackle the task of anomaly detection, the generator 

and discriminator are used to capture the temporal correlation of 

time series distributions. This differs from current hybrid models in 

that the modified PU algorithm is used for pre-training while the 

deep learning GAN is used for the feature extraction and anomaly 
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detection, current hybrid systems use the deep learner as the pre-

trainer and the standard technique as the anomaly detector. The 

advantage of our approach is that it will operate with only small 

amounts of normal labelled data while utilising the readily 

available unlabelled data.  

We evaluate the potential of this framework by performing a 

series of preliminary experiments. To evaluate the performance for 

the unbalanced problem, the normal class in each dataset has a fixed 

size, but the size of the anomaly class is decreased, thereby 

increasing the level of imbalance in the dataset. 

2 RELATED WORKS 

2.1 Deep Anomaly Detection 

Anomaly detection [3] is a technique used to identify unusual 

patterns whose behaviour does not conform to expected normal 

behaviour. Much research has been undertaken on the anomaly 

detection problem using supervised and unsupervised methods. [4], 

[5], [6], [7], [8].  

Due to their nature, labelled anomaly samples are rare 

occurrences and are usually very difficult to obtain. Therefore, 

unsupervised learning techniques are a common approach used to 

solve anomaly detection problems these generally fall into two 

camps unsupervised methods [9] and one-class classification 

methods [10]. 

Deep anomaly detection can capture more complex feature 

interactions than traditional shallow methods [11] the two most 

common generative approaches are Variational Autoencoders 

(VAE) [12], [13] and Generative Adversarial Networks (GAN) 

[11]. A variant of GAN architecture known as Adversarial 

autoencoders (AAE) [14] uses adversarial training to impose an 

arbitrary prior on the latent code learned within hidden layers of 

autoencoder to learn the input distribution effectively. Leveraging 

this ability of learning input distributions, several Generative 

Adversarial Networks-based Anomaly Detection (GAN-AD) 

frameworks are shown to be effective in identifying anomalies on 

high dimensional and complex datasets , [15], [16], [11].  

Generative Adversarial Networks (GANs) trained in semi-

supervised learning mode have shown great promise, especially 

when there are very few labelled data instances for training. 

However, GAN’s are prone to over-fitting and more traditional 

methods have been shown to perform better where there is only a 

smaller number of anomalies. [17]. Therefore, deep hybrid models 

which employ two step learning are interesting where the 

representative features learned within deep models are input to 

more traditional algorithms and are shown to produce state-of-the-

art results [18], [19]. 

2.2 Positive and Unlabelled (PU) learning for 

anomaly detection 

Positive and Unlabelled (PU) Learning is a semi-supervised 

learning method. PU learning refers to the problem where only 

labelled positive data and unlabelled data are provided in the 

training process.  

The labelled positive set is denoted as P and unlabelled set is 

denoted as U. The class prior π is defined as the probability of 

positive instance occurring. Some work on theoretical conclusions 

for PU learning [20] compare PU learning against training when all 

labels are provided. They prove that given infinite unlabelled data, 

PU learning problems can be solved by cost sensitive learning [21].  

Standard PU learners typically assume that a known prior 

distribution is available and generally operate on balanced 

distribution between positive and negative. However, for anomaly 

detection, the positive (normal) data is generally the majority class. 

Thus, conventional PU learning methods cannot be directly applied 

to an anomaly detection problem. The literature discusses the 

proportion of positive instances in unlabelled set, du Plessis et al. 

[21] propose the use of a linear model for positive and unlabelled 

problem. However, the linear model is still not sufficient for 

anomaly detection as inter-class similarities are common. To 

address this issue a self-learning process may be incorporated by 

iteratively extracting reliable positive and negative instances from 

the unlabelled set A boosting-like procedure may be exploited 

during self-learning to improve the performance of individual 

classifiers. 

3 METHOD 

3.1 Overview 

This section gives an overview of our developed framework it 

starts by discussing the operation of the PU learner as a pretraining 

stage and how bagging may be used to improve the performance of 

a PU learner in discriminating positive from negative data points. 

Secondly, we discuss how the GAN model is incorporated into the 

framework in the training stage. The purpose here is to utilise the 

discriminator and generator to converge towards the distribution of 

the positive samples included in the unlabelled dataset. Finally, we 

discuss the development of a GAN anomaly detector utilising the 

model developed in the training stage. Each stage of the framework 

is described in detail below and in figure 1. 
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Figure 1 PU GAN anomaly detection framework. 
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3.2 Stage 1: Pre-Training with PU bagging 

The starting point for our framework is the PU learning 

classifier, which iteratively learns to discriminate positive from 

unlabelled samples. Many binary classification methods may be 

used, bootstrap aggregating or “bagging” is a commonly used 

technique [22]. The final prediction is calculated by aggregating all 

the individual predictions from each of the base learners [23]. 

A source of instability in PU learning is the percentage of 

positive examples in our unlabelled dataset. This is especially 

problematic for anomaly detection tasks as we expect U to consist 

primarily of positive samples, negative samples being rare as they 

are anomalies. Aggregating the classifiers by bagging will induce a 

large variability in the classifiers. Mordelet and Vert describe this 

approach [24]. According to the authors, “the method can match 

and even outperform the performance of state-of-the-art methods 

for PU learning. For our framework the following steps are 

performed by PU bagging during Pre-training 

1. Create a training set by combining all positive data points with 

a random sample from the unlabelled points, with 

replacement. 

2. Build a classifier from this “bootstrap” sample, treating 

positive and unlabelled data points as positives and negatives, 

respectively. 

3. Apply the classifier to the unlabelled data points that were not 

included in the random sample (from step 1) – hereafter called 

OOB (“out of bag”) points – and record their scores. 

4. Repeat the three steps above multiple times and finally assign 

to each point the average of the OOB scores it has received. 

3.3 Stage 2: Model Training with GAN 

A GAN generator and discriminator are created. The generator 

generates fake data sequences as its inputs, and passes the 

generated examples to the discriminator, which will try to 

distinguish the generated data sequences from the actual “real” 

training data sequences. The parameters of the discriminator and 

generator are updated based on the outputs of the discriminator. 

This enables the discriminator to assign labels to both real and fake 

data. After a number of iterations, the generator will have captured 

the distributions of the training data.  

To enable the GAN to capture the relevant dynamics of the data, 

an LSTM network with depth 3 and 100 hidden units is used for the 

generator. The network for the discriminator is relatively simpler 

with 100 hidden units and depth 1. The choice of these settings is 

directed by the discussion in [25] 

3.4 Stage 3: Anomaly Detector with GAN 

In this final stage; the previously trained discriminator and 

generator will be used for the anomaly detection task. The 

discriminator is used to classify the testing samples which are 

mapped back into the latent space. Reconstruction loss is calculated 

established on the variance between the reconstructed testing 

samples by the generator and the genuine testing samples. At the 

same time, the testing samples are also fed to the trained 

discriminator to compute the discrimination loss.  

 GAN’s have an advantage in that the discriminator and the 

generator are trained concurrently to represent the normal 

variability for identifying anomalies. Based on [15], the GAN-

based anomaly detection consists of the following two parts:  

1. Discrimination-based Anomaly Detection; the trained 

discriminator can distinguish anomalies from real data with 

high sensitivity, it serves as a direct tool for anomaly 

detection.  

2. Reconstruction-based Anomaly Detection; the trained 

generator is capable of generating realistic samples, is actually 

a mapping from the latent space to real data space and can be 

viewed as a model that reflects the normal data’s distribution.  

Using the generator and discriminator the two losses are 

combined to assign an anomaly score to each record this allows us 

to detect potential anomalies in the data. 

4 EXPERIMENTAL SETUP 

We have performed Initial comparative analysis of our proposed 

PU-GAN framework. Through various experiments we show the 

performance trends of our anomaly detection framework against an 

OCSVM classifier over various datasets. 

4.1 Data Preparation 

The purpose of using artificial data is to create an idealised data 

distribution on which we can concretely test our frameworks 

performance The synthetic dataset is generated using the SciKit-

Learn library in python, the make_moons methods was used to 

generate two interleaving half circles, an equal number of 

anomalies and positives data points are present.  

For the KDDCUP99 dataset two versions of the dataset are 

used. Firstly, a highly labelled version of the dataset is used 

containing, 562387 samples predominantly consisting of positive 

samples. The second version of the KDDCUP99 dataset is 

purposely manipulated so that a large number training dataset is 

unlabelled. PCA was used to reduce the number of attributes from 

35 to 6, this is a similar methodology proposed by [26].  

We use the metrics, namely Precision, Recall, and F1 scores, to 

evaluate the anomaly detection performance. 

Table 1 Dataset composition 

5 RESULTS 

This section discusses our preliminary results from our 

framework. For comparison on the anomaly detection performance, 

we also applied a One Class Support Vector Machine (OCSVM) 

which is a popular unsupervised anomaly detection method on the 

datasets. It is worth noting that the OCSVM was unable to model 

Item Moons  KDDCUP99 

(high labelling) 

KDDCUP99 

(low labelling) 

Attributes 2 6 6 

Known Positives 3492 556700 8434 

Training size 70000 562387 562387 

Testing size 30000 494021 494021 

Anomalies in testing 15000 911 911 
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the larger KDDCUP99 dataset, this would suggest the OCSVM 

may be unsuitable for larger datasets. Future work will fully 

evaluate the potential for the system. In Table 2, we show the best 

performance by the unsupervised OCSVM and our PU-GAN. We 

focus on the results chosen by the F1 score, this is because this 

measure balance precision and recall.  

Table 2 Anomaly detection results for different datasets. 

Dataset Method Precision Recall F1 Score 

KDDCUP99 (high 

labelling) 

PU-GAN 0.821 0.925 0.870 

KDDCUP99 (low 

labelling) 

PU-GAN 0.816 0.647 0.722 

OCSVM 0.729 0.803 0.716 

Moons PU-GAN 1.0 0.995 0.997 

OCSVM 0.85 0.847 0.847 

PU-GAN performed better than the OCSVM for the moons’s 

dataset. This is a balanced dataset with low dimensionality and 

clear boundaries between the two classes. We also applied PU-

GAN to the two versions of the KDDCUP99 dataset. On the dataset 

with the high number of labelled positives for training, PU- GAN 

can reach 0.87 F1 score with precision larger than 82% and recall 

higher than 92%. One point of note is that we have performed our 

classification only using partially labelled positive records. Testing 

was also performed on the KDDCUP99 datasets with many of the 

records in the train set unlabelled. This introduced imbalance to the 

training data to reflect a more realistic anomaly detection scenario, 

in this regard our framework still works well and performs better 

than the baseline OCSVM. 

6 SUMMARY AND DISCUSSION 

To date we have developed a hybrid solution by using both 

normal (positive) and unlabelled data for semi-supervised anomaly 

detection. Particularly, we introduce a new hybrid framework based 

on PU learning for pre-training in combination with a GAN to 

detect anomalies. We extend previous PU learning methods to 

better address the unbalanced class problem, which is typical for 

anomaly detection, and handle multiple unknown anomaly types. 

Our framework has been shown to learn the anomaly classifier 

incrementally from only the partially labelled positive data and 

unlabelled data. Preliminary experimental results show that our 

method performs well under different class priors and different 

proportions of given positive classes. 

These preliminary experiments have only compared with one-

class SVM on small datasets. We intend to conduct more complete 

tests against more state-of-the-art methods published in the area of 

semi-supervised or unsupervised anomaly detection with public 

datasets for benchmarking 

More precisely we intend to continue and expand on this 

research in several ways. Firstly, the application of more robust 

evaluation metrics will be investigated and applied to the results. 

Secondly, the framework will be evaluated on datasets with varying 

levels of class imbalance. Finally, we intend to apply the 

framework to a challenging anomaly detection use case to highlight 

the application of such a system in a real-world scenario. 
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