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ABSTRACT
Anomaly detection is facing with emerging challenges in many 
important industry domains, such as cyber security and online rec-
ommendation and advertising. The recent trend in these areas calls 
for anomaly detection on time-evolving data with high-dimensional 
categorical features without labeled samples. Also, there is an in-
creasing demand for identifying and monitoring irregular patterns at 
multiple resolutions. In this work, we propose a unified end-to-end 
approach to solve these challenges by combining the advantages of 
Adversarial Autoencoder and Recurrent Neural Network. The model 
learns data representations cross different scales with attention mech-
anisms, on which an enhanced two-resolution anomaly detector is 
developed for both instances and data blocks. Extensive experiments 
are performed over three types of datasets to demonstrate the efficacy 
of our method and its superiority over the state-of-art approaches.
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1 INTRODUCTION
Anomaly detection aims at identifying outliers or irregular patterns
which are inconsistent with the majority of data. It can provide a
wide range of applications, from capturing rare events or unusual
observations to protecting a complex system against failures or at-
tacks. Recent trend in many important industrial domains, such as
online recommendation and advertising (as illustrated in Figure 1),
online financial service and cyber security, has set four unprece-
dented challenges for anomaly detection. First, as data is changed
with time, there is no gold standard for anomalous data across all
time periods. Second, labeled anomalous samples are rarely avail-
able. Third, data format can be very complex, for example, a com-
pound of attributes consisting of categorical ids with extremely high
dimension. The sparse, sophisticated and noisy couplings among
massive features make it very difficult to recognize the underlying
patterns through handcrafted rules or feature engineering. Fourth,
a systematic monitoring may require detecting anomalous events
at different resolutions for different needs. The data patterns can
vary with scales. Although straightforward, aggregating small-scale
detection results for larger-scale detection is not guaranteed to be
effective. For example, detecting collective patterns such as phase
distortion.

Deep learning has drawn immense attention in the field of anom-
aly detection. Deep neural network has the potential to automatically
learn complex feature representations, thus making it possible to
train an anomaly detector in an end-to-end fashion with less non-
trivial expertise feature engineering. Inspired by Generative Ad-
versarial Network (GAN) [13] and Adversarial Autoencoder [20],
some researches have been reported to adversarially train a pair
of neural networks (generator and discriminator) through unsuper-
vised or semi-supervised learning to construct an anomaly detector
[1, 23, 31]. The networks’ losses, especially adversarial loss and re-
construction loss, are used to identify anomalies. By design, normal
samples should follow the distribution close to the majority of the
training data, and thus obtain lower losses than anomalous samples.
Assuming that the training data is normal, this type of approaches
do not require labeled anomalies for training. They are able to solve
the second challenge (lack of label) listed above but do not cover the
other three.
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Figure 1: An example to show the data format in an online rec-
ommendation system. Each data instance contains multiple at-
tributes composed of a group of categorical features. Either sys-
tem failure or fraud attack can generate anomalous data with
irregular values.

In this paper, following the emerging idea of adversarially learned
anomaly detection, we present an adversarial multiscale anomaly
detector (AMAD) to tackle the aforementioned challenges in an end-
to-end manner. We train a pair of deep encoder-decoder generator
and discriminator to fit the normal patterns of the unlabeled training
data (Challenge 2), and using a compound loss as anomaly score for
inference. We combine sequential and hierarchical representation
learning to detect anomalies at two different scales (Challenge 4)
for time-evolving high-dimensional categorical data (Challenge 1,3).
The main contributions of this work are highlighted as follows 1:

• To the best of our knowledge, AMAD is the first unified
end-to-end approach to tackle the aforementioned important
challenges. Especially, our work is the first attempt to extend
adversarial anomaly detector to the scenario of complex high-
dimensional categorical data.

• We introduce a multiscale data representation learning mech-
anism. Patterns are extracted and inspected cross a range of
scales, from single features of an individual instance up to
data blocks. This produces an enhanced two-resolution anom-
aly detector for both individual instances and data blocks.

• We report extensive experiments on three types of datasets,
validating that our model outperforms the state-of-arts notably.
Moreover, we conduct ablation studies to prove the efficacy
of the key components in our model.

2 RELATED WORKS
Deep learning has been widely applied in all research topics such as
ranking [12], graph mining [11] and text generation [30], etc. As a
fundamental one, anomaly detection has been extensively studied via
unsupervised or semi-supervised deep approaches. iForest [18], one
of the most famous approaches, utilizes a tree-based structure to split
data randomly and ranks data points as anomalous based on how easy
they get isolated. Affiliated with Support Vector Machine (SVM)
family, one-class SVM classifiers [5, 27, 28] use designed kernels to
project data to a latent space and search for a best hyperplane to set
anomalies apart. Derived from these works, kernel-based one-class

1Our codes and datasets will be made available at publication time.

classification is further combined with deep neural network [4, 22]
to automatically extract useful features from massive complex data.

Deep learning attracts increasing attentions for the past decade.
As a basic type of deep learning framework, autoencoder has already
widely applied on anomaly detection [2, 3, 25, 32]. It learns to
compress the input data with multiple hidden layers and reconstruct
the input data through an encoding-decoding mechanism. Trained
solely on normal data, autoencoder fails to reconstruct anomalous
sample and produces large reconstruction error that can be used
to identify anomaly. Furthermore, an autoencoder ensemble with
adaptive sampling is proposed to improve the robustness on noisy
data [6].

Recently, Generative Adversarial Networks rise up as a popular
track in deep learning [15, 23, 26]. Typically, a GAN-based model
consists of two parts, i.e., generator and discriminator. The generator
learns a representation to resemble the original input data, while the
discriminator is trained to distinguish between the resembled and
original inputs. The adversarial training enhances the model’s ability
of learning the distribution of input normal data, and is proven to be
very effective for identifying anomalous or novel data.

Combining GAN and autoencoder, Adversarial Autoencoder [20]
offers an alternative way for unsupervised or semi-supervised anom-
aly detection. Unlike GAN approaches which learns a distribution
to generate discrete samples, Adversarial Autoencoder uses autoen-
coder as the generator to learn to resemble data. By mapping the
input to latent space and remapping back to input data space (recon-
struction), it enables not only better reconstruction but also control
over latent space [8, 21]. Taking this track of thoughts, BiGAN [9]
and ALI [10] both apply variational autoencoder as the generators
in their models to optimize the distribution of normal data. Two
following works [1, 31] combine both GAN and Adversarial Au-
toencoder components to jointly train an anomaly detector and use
the reconstruction errors as the criteria to judge whether testing data
is anomalous or not.

3 METHOD
3.1 Overview
The framework of our model is sketched in Figure 2. Our approach
adversarially trains an anomaly detection model on unlabeled data,
with the assumption that the training data is normal (at least mostly
normal). The input data for the model is of a hierarchical four-level
structure (also illustrated in Figure 2). We use the model to detect
anomalies at the top two levels (instance and block). Since the model
is trained to fit the distribution of normal data, the anomalies should
have higher loss than normal data. Therefore, we use the loss to infer
anomalies [1, 15, 23, 26, 31].

In the following sections, we first introduce the multiscale repre-
sentation learning across different levels. Second, we describe the
adversarial learning architecture. In the end, we explain how we
train the model and use the model for inference.

3.2 Multiscale Representation Learning
Our model hierarchically learns representations for the structured
input data, from feature, attribute, instance, up to instance block
level. We implement attention mechanism [17, 29, 33] to summarize
informations with distributed weights of importance to form the
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Figure 2: The overall architecture of AMAD

next-level representation, so that most important informations are
extracted to the high level.

3.2.1 Feature and Attribute Representation. For the input
layer, sparse embedding is implemented to embed each categori-
cal feature to a fixed-size dense vector vF , which is automatically
learned during the training process. For each attribute, its repre-
sentation vector vA is extracted from all the embedding vectors
of its input feature collection {vF1 , ...,v

F
NA } with a self-attention

mechanism [17]:

eFi = (uF )⊺tanh(WFvFi + b
F ),

aFi =
exp(eFi )∑NA

j=1 exp(e
F
j )
,

vA =
NA∑
i=1

aFi v
F
i ,

(1)

where WF , bF and uF are trainable weight matrix, bias vector and
attention vector, respectively. NA denotes the number of the input
features belonging to the attribute. vFi , eFi and aFi denote the embed-
ding vector, attention score, and normalized attention score of the
ith feature, respectively.

3.2.2 Instance Representation. Based on the attribute vec-
tors, we construct the higher-level representation for each input
instance from two channels, i.e., self representation and relative
representation against the previous data block.

The self representation vector,vS , is extracted from the instance’s
attribute representations {vA1 , ...,v

A
N I }:

eAi = (uA)⊺tanh(WAvAi + b
A),

aAi =
exp(eAi )∑N I

j=1 exp(e
A
j )
,

vS =
N I∑
i=1

aAi v
A
i ,

(2)

where WA, bA and uA are trainable weight matrix, bias vector and
attention vector, respectively. N I denotes the number of attributes.
vAi , eAi and aAi denote the embedding vector, attention score, and
normalized attention score of the ith attribute, respectively.

The relative representation vector, vR , is calculated by comparing
the instance’s attributes with the previous block vector. It is designed
to enable the model to extract instance’s relative patterns against the
larger-scale collective patterns of the data:

eRi = (uR )⊺tanh(WR [f (vAi ),v
Mem ] + bR ),

aRi =
exp(eRi )∑N I

j=1 exp(e
R
j )
,

vR =
N I∑
i=1

aRi v
A
i ,

(3)

where the square brackets [ , ] denotes the concatenation operation.
The transformation function f (·) is the Leaky ReLU activation func-
tion. WR , bR and uR are trainable weight matrix, bias vector and
attention vector, respectively. eAi and aAi are the attention score and
normalized attention score of the ith attribute, respectively. vMem is
the memory vector from the previous data block and its calculation
will be described in the next section.

For the output of this module, we concatenate the two latent
vectors to form the final representation vector of the instance:

v I = batch_norm([vS ,vR ]). (4)

3.2.3 Block Representation. Furthermore, we go beyond in-
stance level and implement a Recurrent Neural Network (RNN)
cell to capture the long-term collective patterns of the sequential
instances. For each data block, the representation can be calculated
as:

vBi = RNN(f (v Ii ),v
B
i−1), i = 1, ...,N B , (5)

where N B is the instance number in the block.
The last hidden state, denoted by vB , contains the latest and most

information about the data’s collective patterns over time. For this
reason, we use vB as a representation for the block to improve the
block-level anomaly detection (will be revisited in the following
paragraphs). Moreover, it is also used as both the memory vector
vMem (in Eq. 3) and the initial hidden state for the next block.

3.3 Adversarial Learning
Following the idea of Adversarial Autoencoder, we build an adversar-
ial learning architecture to learn the intrinsic patterns of the training
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data for both instance and block levels. On one hand, the encoder-
decoder generator part learns to generate resembled representations
of the inputs. In this way, cycle consistency [31] is enforced in the
latent space. On the other hand, the discriminator tries to distinguish
the real and resembled representations.

3.3.1 Instance Generator. We use an autoencoder to generate
resembled instance vectors. The autoencoder first encodes the in-
stance representation vectorv I into a hidden space, and subsequently
decodes it back to reconstruct a representation vector v I∗:

henc =Wenc (f (v I ) + ∆) + benc ,

v I∗ = f (Wdec f (henc ) + bdec ) − ∆,
(6)

where Ws and bs are the trainable weights and biases, respectively.
The performance of autoencoder is vulnerable to the noise in

training data [32]. In order to get a more robust model, we add a
standard Multivariate Gaussian random noise ∆ ∼ Nd (0,E) into the
encode-decode process, where E is the identity matrix and d is the
dimension of instance vector.

3.3.2 Block Generator. To introduce adversarial learning for
long-term patterns, we also reconstruct a resembled vector per block
for vB :

vB∗i = RNN(f (v I∗i ),vB∗i−1), i = 1, ...,N B . (7)

To be consistent with the calculation of real block vector vB , here,
we don’t train the weight and bias for the RNN cell, but directly copy
the values of the corresponding parameters used for Eq. 5. Similarly,
the last hidden state is taken as the final resembled vector of the
current block, denoted by vB∗.

3.3.3 Discriminator. Following the standard setting of binary
classification, we build two one-layer neural network classifiers for
both instance and block levels:

ŷI = σ (WIx I + bI ) with x I ∈ {v I ,v I∗} (8)

and
ŷB = σ (WBxB + bB ) with xB ∈ {vB ,vB∗}, (9)

where Ws and bs are the trainable weights and biases, respectively.
σ (·) denote sigmoid activation function.

3.4 Training and Inference
3.4.1 Training. In the training stage, we assume all training

data are normal data to train our model in the unsupervised manner.
As generative adversarial training is hard to converge, we don’t
minimize the generator loss and discriminator loss at the same time.
Instead, we minimize the two losses in an alternative process: first
holding the discriminator loss LD and minimizing generator loss
LG for several steps, and then minimizing discriminator LD with
the generator loss LG being held.

For the generator loss, we use the sigmoid cross entropy [7]
between real and resembled vectors

LI
G
= σ (v I )

⊺
loд(σ (v I∗)) + (1 − σ (v I ))⊺loд(1 − σ (v I∗)) (10)

as the instance generator loss, and

LB
G
= σ (vB )

⊺
loд(σ (vB∗)) + (1 − σ (vB ))⊺loд(1 − σ (vB∗)) (11)

as the block generator loss. The total generator loss to minimize is
the sum of block generator loss and the average of its N B instance
generator losses:

LG =
1
N B

N B∑
i=1

LI
G,i + LB

G
. (12)

For the discriminator loss, under standard setting of binary classi-
fication, we also use cross entropy based on the output of Equations
8 and 9

LI
D
= yI loд(ŷI ) + (1 − yI )loд(1 − ŷI ) (13)

as the instance discriminator loss, and

LB
D
= yBloд(ŷB ) + (1 − yB )loд(1 − ŷB ) (14)

as the block discriminator loss. y ∈ {yI ,yB } is defined as: y = 1 for
real vectors and y = 0 for resemble vectors. In each optimization
step, the total discriminator loss of a data block to minimize is:

LD =
1
N B

N B∑
i=1

LI
D,i + LB

D
. (15)

3.4.2 Inference. For inference, we use compound loss as the
output anomaly score to measure the degree of abnormality. Because
the model lowers down the total loss by learning to fit normal data
patterns during training. Abnormal data will produce higher loss
since the model fails to fit abnormal patterns. The anomaly score of
an instance is given by:

zI = LI
G
+ β · LI

D
. (16)

The anomaly score for a block is calculated by including both the
block-level losses and the average instance anomaly score within the
block:

zB = LB
G
+ β · LB

D
+ γ ·

1
N B

N B∑
i=1

zIi . (17)

Two weight parameters β and γ are introduced to balance the influ-
ences from the different terms.

4 EXPERIMENT SETUP
4.1 Datasets
Three datasets are utilized to illustrate the performance of the pro-
posed method. Their statistics are shown in Table 1, and more details
are described in Appendix.

Synthetic dataset: The Synthetic data is generated by adding
random noises to multi-dimensional zigzag signals of discrete inte-
gers. The anomalies are constructed by either randomly generating
numbers or randomly copying training instances.

Public dataset2: It is a public dataset about positions in the
‘connect-4’ game. We use the instances labelled with ‘win’ as normal
data and the instances labelled with ‘loss’ as anomaly data. Note
that there is no sequential relation within the data.

Industrial dataset3: The Industrial dataset is constructed by user
behavior data from a real-world online recommendation system,
which is very important for many tasks, such as click-through rate
prediction [19, 33]. The instances are collected over 10 consecutive

2https://archive.ics.uci.edu/ml/datasets/Connect-4
3The Industrial dataset is published at https://tianchi.aliyun.com/dataset/dataDetail?dataId=27665.
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days, and stored in the order of timestamp. As illustrated in Figure
1, each instance consists of multiple attributes about user’s past
behaviors, e.g., clicked items in the past 3 days, favorite brands in
the past week, etc. Each attribute contains a group of categorical
ids in representation of the corresponding items, brands, etc. It’s
impractical to get a dataset with enough well labeled anomalies from
real-world production. Thus, we mimic anomalies by simulating
real conditions (attributes are polluted by errors in upstream data
pipeline). The anomalies are generated by deleting the records of a
random selected attribute, or replacing the records with random ids.

Dataset #Dimension #Attribute #Normal #Anomaly

Synthetic 30 3 10,000 1,000
Public 192 64 44,000 4,000

Industrial 440,512 8 783,000 25,000

Table 1: Statistics of three datasets used in the paper. The di-
mension denotes the total number of all the distinct categorical
feature IDs for the entire dataset.

Method Reference Category

OCSVM4 [27] SVM
iForest4 [18] Tree ensemble
RDA5 [32] Autoencoder

OCNN6 [4] Deep SVM
ALAD7 [31] GAN

GANomaly8 [1] GAN
ALOCC9 [23] GAN

Table 2: Baseline methods in this paper.

For the Public dataset, the normal data are randomly split for
either training or testing, while the testing normal data is mixed with
the anomalous data to form the final testing set. For the Synthetic and
Industrial datasets, the former part (the majority) of the normal data
is used for training, whereas the last small portion is used separately
and mixed with anomaly samples for testing. To better cover the
high-dimension space outside the normal data and test the models’
performance more efficiently, we include a large ratio of anomalies
for the test data. All the testing datasets have a half-to-half ratio of
normal and anomalous instances. Unbalanced test set can be made
by down sampling anomalies, and the corresponding performance
metrics such as recall and precision can be calculated by adjusting
the reported results with sample ratio. For block-level detection,
we define that a testing data block is anomalous if more than 50%
instances in a block are anomalous. Otherwise the block is defined
as normal.

4https://scikit-learn.org/
5https://github.com/zc8340311/RobustAutoencoder
6https://github.com/raghavchalapathy/oc-nn
7https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection
8https://github.com/samet-akcay/ganomaly
9https://github.com/khalooei/ALOCC-CVPR2018

4.2 Settings
4.2.1 Parameters and Metrics. We report the results with

best hyper-parameters from grid search. We train our model using
RMSProp optimizer with learning rate as 0.01. We set block size as
100, β = 0.3 and γ = 0.05 for calculating the compound anomaly
score (Eqs. 16 and 17).

In this paper, we report Accuracy, F1-score and AUROC as the
metrics to evaluate model performance. With the anomaly scores of
all testing data, we firstly calculate AUROC score by considering
all possible thresholds and subsequently pick the optimal threshold
as defined in [14]. Based on the optimal threshold, Accuracy and
F1-score are calculated in the end.

4.2.2 Baselines. As listed in Table 2, we selected 7 state-of-
art methods for comparison with proposed model. These models
only output anomaly score for each individual instance. We use the
average score of the instances in a block as the block-level anomaly
score. We also want to note that the baseline models are not originally
designed for the complex high-dimensional categorical data such
as our Industrial dataset. Therefore, for the Industrial dataset, we
embed the instances into vectors ahead with Doc2Vec [16], and
use the embedded vectors of instances as the input for the baseline
methods.

5 RESULTS
In this section, we report the experimental results to demonstrate
our approach’s superiority over the other methods. Moreover, we
present studies to verify the effects of the important characteristics
of our model.

5.1 Performance of the Full Model
We run our model ten times and report the average evaluation re-
sults on instance-level anomaly detection and block-level anomaly
detection in Tables 3 and 4. To verify our model’s superiority, we
calculate the performance differences between our model and the
best baseline on each metric for all the runs, and apply a T-test to
check whether the performance difference is significantly above 0
or not.

We can find that the GAN-based models perform best among
the baselines, while our model outperforms all the baselines with
respect to all the metrics and datasets. Moreover, our model displays
larger advantages for block-level detection. Clearly, the block-level
anomaly detection gets more benefits from our unified multiscale
approach.

5.2 Random Noise in Autoencoder
The performance of autoencoder can be deteriorated due to the noises
in the training data. We add a random noise into the autoencoder
(Eq. 6), to make it more robust. To check the utility of the added
noises, we retrain an ablated model by removing the ∆ in Eq. 6. As
shown by the results in the first rows (–Noise) of Tables 5 and 6,
adding noise clearly improves the generalization performance for all
the tests.
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Model Synthetic Dataset Public Dataset Industrial Dataset

Accuracy F1-macro AUROC Accuracy F1-macro AUROC Accuracy F1-macro AUROC

OCSVM 0.650 0.644 0.641 0.578 0.577 0.609 0.591 0.591 0.623
iForest 0.650 0.650 0.671 0.576 0.575 0.618 0.561 0.559 0.589
RDA 0.655 0.652 0.704 0.564 0.563 0.564 0.530 0.530 0.538

OCNN 0.550 0.549 0.533 0.578 0.577 0.577 0.624 0.584 0.624
ALAD 0.664 0.664 0.705 0.650 0.650 0.706 0.618 0.618 0.661

GANomaly 0.646 0.644 0.703 0.676 0.676 0.709 0.610 0.610 0.657
ALOCC 0.638 0.637 0.692 0.682 0.681 0.703 0.612 0.611 0.648
AMAD 0.680* 0.681* 0.717* 0.700* 0.689* 0.730* 0.644* 0.643* 0.691*

Table 3: Results of instance anomaly detection on three datasets. Symbol ‘*’ highlights the cases where our model significantly beats
the best baseline with p value smaller than 0.01.

Model Synthetic Dataset Public Dataset Industrial Dataset

Accuracy F1-macro AUROC Accuracy F1-macro AUROC Accuracy F1-macro AUROC

OCSVM 0.543 0.528 0.555 0.580 0.573 0.562 0.572 0.561 0.581
iForest 0.672 0.660 0.674 0.540 0.539 0.562 0.501 0.499 0.494
RDA 0.644 0.633 0.680 0.538 0.535 0.543 0.520 0.508 0.499

OCNN 0.512 0.508 0.498 0.572 0.554 0.561 0.626 0.577 0.648
ALAD 0.600 0.599 0.629 0.655 0.650 0.683 0.600 0.596 0.620

GANomaly 0.563 0.555 0.574 0.652 0.642 0.679 0.579 0.557 0.580
ALOCC 0.641 0.625 0.640 0.512 0.512 0.523 0.581 0.576 0.605
AMAD 0.764* 0.767* 0.745* 0.660* 0.659* 0.746* 0.655* 0.655* 0.674*

Table 4: Results of block anomaly detection on three datasets. Symbol ‘*’ highlights the cases where our model significantly beats the
best baseline with p value smaller than 0.01.

Model Synthetic Dataset Public Dataset Industrial Dataset

Accuracy F1-macro AUROC Accuracy F1-macro AUROC Accuracy F1-macro AUROC

– Noise -4.0 -4.2 -0.1 -7.5 -8.7 -2.8 -2.4 -2.2 -3.2
– RelRep -5.9 -6.3 -5.9 -1.7 -1.3 -0.4 -4.4 -6.9 -8.5

Table 5: Instance-level performance differences between the ablated model and the full model. Results are scaled by a factor of 100.

Model Synthetic Dataset Public Dataset Industrial Dataset

Accuracy F1-macro AUROC Accuracy F1-macro AUROC Accuracy F1-macro AUROC

– Noise -6.4 -7.0 -0.3 -3.0 -5.7 -0.7 -2.2 -2.2 -0.6
– RelRep -14.2 -14.8 -2.6 0.0 -1.1 -0.6 -3.9 -7.0 -1.9

– BlockLoss -10.0 -11.1 -7.4 -2.7 -2.1 -0.9 -6.2 -5.3 -4.4

Table 6: Block-level performance differences between the ablated model and the full model. Results are scaled by a factor of 100.

5.3 Relative Representation of Instance
We introduce the relative representationvR (Eqs. 3 and 4) to improve
the pattern recognition. To justify this, we retrain an ablated model
(–RelRep) without this module, i.e., deleting Eq. 3 and removing vR

from Eq. 4. It leads a big drop in the performance, as shown in the
second rows of Tables 5 and 6. Through comparing the instance with
block representation, vR notably enriches the information extracted
at high level.

5.4 Block Loss for Block-Level Detection
To testify the effect of the block loss for detecting anomalous blocks.
In consistent with baseline approaches, we remove the first two
terms in Eq. 17, and only use the average instance anomaly score.
As listed in the third row of Table 6 (–BlockLoss), the performance
drops drastically down to the level very close to the baselines! The
block loss adds detection of the collective patterns to our model,
which is of great importance for detecting block-level anomaly.
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Figure 3: The full model’s performance of block level detection
as a function of testing block size on the three datasets.

5.5 Performance on Non-Sequential Data
Different with the two time-evolving datasets (Synthetic and Indus-
trial dataset), the Public dataset is used to test the models under a
simpler scenario, i.e., categorical data without sequential patterns.
As expected, on this non-sequential data, the sequence-related com-
ponents of our model has very weak impact on the performance
(–RelRep and –BlockLoss in Tables 5 and 6). Even though, our
model still outperforms all the baselines (Tables 5 and 6), which
demonstrates the intrinsic superiority of the hierarchical representa-
tion learning structure of our model.

5.6 Block Size for Detection
We also tested how the testing block size affects our model’s de-
tection performance (as shown in Figure 3). For the Public dataset,
there is no significant correlation between block size and the AUROC
score, in consistent with the very weak effect of sequence-related
components (as discussed in the last subsection). For both Synthetic
and Industrial datasets, we can see the performance drops for block
size > 100, where the testing block size exceeds the training block
size. Also, for the left most case where block size = 1, the AUROC
scores are very close to the corresponding results in Table 3. In-
cluding block losses (Eq. 17) barely affect detection for individual
instances.

6 SUMMARY AND DISCUSSION
In this paper, we present AMAD, a multiscale Adversarial Autoen-
coder for anomaly detection at different levels on high-dimensional
and time-evolving categorical data. We demonstrate the effective-
ness of our method by extensive experiments on datasets of different
sizes and scenarios.

Real-world streaming data can have severe non-stationary data
drift problem, which may require to keep the model updated in time
through online incremental learning [24]. In this work, we have
trained our model in the setting of online incremental learning, i.e.,
processing the time-ordered data block by block. For future work, a
more comprehensive study on online incremental learning will be
followed. Also, we will work on extending the approach to more
complex industrial scenarios, i.e., multiscale detection cross large

span of resolutions (from instance and block level to hour and day
levels), large-scale distributed data process.
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7 APPENDIX
7.1 Details of Datasets
Synthetic dataset: We initialize the first instance with three cate-
gorical ids ‘0,10,20’, and then generate the following instances by
add 1 on each ID of the previous instance. If the ID surpasses 30, it
will be subtracted by 30 and substituted by the remainder. Noises are
introduced to the deterministic signals, by randomly selecting 10%
IDs and adding random noises ∈ {−1, 1} onto their original values.
This process is repeated 220 times with a period of 50, generating
11000 normal instances. We use the first 9000 normal instances as
the training data and the remaining 2000 for testing. In the testing set,
we randomly select 1000 instance and replace them with anomalies.
The anomalies are constructed by either randomly generating IDs or
copying randomly selected training instances.

Public dataset: It is about positions in the ‘connect-4’ game.
Each feature in an instance refers to one of three choices (taken, not
taken, blank) on a position. Each instance refers to a possible choice
permutation. We use the instances labelled with ‘win’ as normal data
and the instances labelled with ‘loss’ as anomaly data. We randomly
select 40000 normal instance for training, while randomly mix the
other 4000 with the 4000 anomalies to form the testing set.

Industrial dataset: The Industrial dataset is constructed by user
behavior data from our online recommendation system. The user be-
havior record is updated according to user’s latest behaviors. When-
ever the system receives an impression request from a user, a instance
is generated. The data is collected over 10 consecutive days, and
stored in the order of timestamp. All the real-world data is assumed
to be normal. We use the first 758000 normal instances as the train-
ing data and the remaining 50000 for testing. In the testing set, we
randomly select 25000 instances and replace them with anomalies.
The anomalies are generated by deleting the records under a random
selected attribute, replacing the records with random IDs.
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