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ABSTRACT
With the rapid growth of data and computing power, deep learn-
ing based approaches have become the main solution for many 
artificial intelligence problems such as image classification, speech 
recognition and computer vision. Several excellent deep learning 
(DL) frameworks including Tensorflow, MxNet and PyTorch have
been made open-sourced, further accelerating the advance of the
community. However, existing DL frameworks are not designed for
applications involving high-dimensional sparse data, which exists
widely in many successful online businesses such as search engine,
recommender systems and online advertising. In these industrial
scenarios, deep models are typically trained on large scale datasets
with up to billions of sparse features and hundreds of billions of
samples, bringing great challenges to DL framework.

In this paper, we introduce a high-performance, large-scale and
distributed DL framework named XDL which provides an elegant 
solution to fill the gap between general design of existing DL frame-
works and industrial requirements arising from high-dimensional 
sparse data. Since 2016, XDL has been successfully deployed in Al-
ibaba, serving many productions such as online advertising and rec-
ommender system. Running on hundreds of GPU cards in parallel,
XDL can train deep models with tens of billions parameters within 
only several hours. Besides its excellent performance and flexibility,
XDL is also friendly to developers. Algorithm scientists in Alibaba 
can develop and deploy new deep models with only several lines of 
simple codes. The XDL API and a reference implementation were
released as an open-source package under the Apache 2.0 license in 
December, 2018 and are available at https://github.com/alibaba/x-
deeplearning.

KEYWORDS
Deep learning, High-dimension sparse data, XDL
ACM Reference Format:
Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui 
Huang, Xinyang Guo, Dongyue Wang, Yue Song, Liqin Zhao, Zhi Wang,

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org.
DLP-KDD’19 , August 5, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

Peng Sun, Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu, Kun Gai. 
2019. XDL: An Industrial Deep Learning Framework for High-dimensional 
Sparse Data. In 1st International Workshop on Deep Learning Practice for High-
Dimensional Sparse Data (DLP-KDD’19 ), August 5, 2019, Anchorage, AK, USA. 
ACM, New York, NY, USA, 9 pages. 

1 INTRODUCTION
In the last decade, as one of the most exciting and powerful branches 
of artificial intelligence, deep learning has generated important 
breakthroughs in many areas such as speech recognition, computer 
vision, natural language processing and medical diagnosis. Thanks 
to the astronomical amount of data generated in many real-world 
applications, the unprecedented computing power brought by in-
frastructures such as graphics processing units (GPUs), as well as 
the sophisticated open-source deep learning frameworks such as 
TensorFlow [1], MxNet [6], Caffe [18], etc., deep learning technolo-
gies have been extensively applied to solve real-world problems.

Although existing deep learning frameworks have achieved great 
successes in many areas, they are not friendly designed for appli-
cation involving high-dimensional sparse data. High-dimensional 
sparse data widely exists in many internet-scale applications such 
as search engine, recommender systems and online advertising. For 
example, in our display advertising system, we have petabytes (PB) 
of log data of user behavior generated everyday. Training samples 
extracted from this data contain billions of features, while only a 
few of these dimensions are non-zero for each sample.

Different from applications such as speech recognition, computer 
vision, and natural language processing where data is dense1, these 
internet-scale online businesses, where data is sparse, pose unique 
challenges to the deep learning frameworks. First, the problem scale 
is so large that it cannot be solved on a single node. Parallelization is 
needed to solve problems of this scale. Second, the data is extremely 
sparse. Sparsity could cause low efficiency if not handled properly. 
Third, this data is not nicely formulated. There could be repeated 
features between samples, causing high pressure on bandwidth. 
Moreover, in rapid model evolutions, features need to be added or 
deleted in order to test their relevance to the goal. Existing deep 
learning frameworks are not friendly designed to resolve these 
challenges. Such gap makes it difficult for these businesses to fully 
benefit from the flourishing deep learning technologies.

With the abstraction of our hands-on experience in building deep 
learning solutions for our online advertising systems, deep models 
with high-dimensional sparse data often include two parts: sparse 
feature learning and dense model learning. Sparse feature learning is

1most dimensions of input feature vectors for these problems are non-zero
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the process to convert massive high-dimensional sparse data into
dense features while dense model learning takes care of learning
optimal model structures based on the dense features. These two
parts also need to be smartly connected so that these two learning
tasks can interact with each other to achieve best outcomes.

In this paper, we introduce XDL, which is a high-performance,
large-scale, and distributed deep learning framework designed for
learning tasks involving high-dimensional sparse data. In the sparse
feature learning part, XDL offers a sophisticatedly designed dis-
tributed system, with deep optimizations on I/O, data pipeline,
communication and GPUs, that provides extreme efficiency and
scalability. Users can use embedding dictionary or deep models
like CNN/RNN to map sparse item features or image/text features
into dense representations. In the dense model learning part, XDL
seamlessly adopts any open-source deep learning framework as its
backend with a brand new technology named bridging technology.
With this design, XDL is able to accelerate training on internet-
scale learning problems and serve in end-to-end production systems.
When evaluating XDL on real-world datasets, we found that it could
run at least 5 times faster than the native distributed version of
Tensorflow/MxNet.

Since 2016, XDL has been deployed in a series of core businesses
in our company such as e-commerce recommendation and online
advertising. Running on hundreds of servers, XDL trains a number
of models with tens of billions parameters within only several
hours. Besides its performance and flexibility, XDL is dedicated to
hide complicated engineering details from users. Using XDL, our
algorithm scientists can develop and deploy new models with only
several lines of simple codes. Such system design brings flexibility
and unlocks a number of algorithm innovations.

2 RELATEDWORK
As the problem scale and complexity are increasing, we are facing
more severe challenges for performance and scalability of deep
learning frameworks. Traditional solutions such as TensorFlow [1],
MxNet [6] and Caffe [18] usually run on single machine and provide
limited support for distributed training. Even with multiple GPUs,
those single machine solutions can hardly handle themodel training
with 1011 samples and 1010 parameters. Therefore, distributed
training platform seems a promising solution, and many scholars
have made great contributions in this area.

MPI [14] defines a set of interfaces for communication and coor-
dination between machines. Due to its compatibility and scalability,
MPI is widely used in parallel computing on distributed memory
applications. A lot of machine learning frameworks are built on
MPI. Chen et al proposed RABIT [5], an AllReduce library, improv-
ing OpenMPI with additional fault-tolerant property. Adam Coates
et al proposed COTS HPC technology [3, 9]. They built a cluster
of GPU servers with MPI on InfiniBand interconnections. With
only 16 machines, this system can efficiently train model with 11
billion parameters. However, the data preprocessing part of these
frameworks are oversimplified. Therefore they neither can take full
advantage of data characteristics, nor can handle the massive-scale
jobs for sparse data. Moreover, fault tolerance is not well-supported
in MPI-based systems, thus resulting the availability problem in
some industrial scenarios.

Another widely used paradigm is the Parameter Server (PS)
which could use key-value store to handle sparse data properly.
Dean et al [11] first introduced the PS and used downpour SGD to
train large scale deep networks at Google. Petuum [30] introduces
bounded-delay model into PS architecture [23], enabling asynchro-
nous computation. Parameter sever is also widely used in industry.
DSSTNE [2] is a DL framework designed by Amazon, specifically
for large sparse dataset. It provides extremely efficient automatic
model-parallel multi-GPU support and 100% Deterministic Execu-
tion. Model parallelism and data parallelism are supported at same
time. Kunpeng [34] is a PS based distributed learning system at
Alibaba, supporting models like sparse Logistic Regression and
Multiple Additive Regression Trees.

Those PS based frameworks are usually designed to support
traditional models like Logistic Regression or Convolutional neural
network, which contains only the sparse part or dense part. It
would be difficult for these frameworks to handle models involving
both large scale sparse features and customized deep networks, as
described in [12, 31, 32].

On the other hand, natural language processing systems such
as machine translation [29] and speech recognition [3] use similar
SparseNet + DenseNet model structures. However, they usually
only have up to millions of words while it is common for us to have
billions of item IDs or images as features.

Another active research area is to automatically find optimal
run-time configurations for distributed model training. [27] uses
reinforcement learning to find optimal device placement. [19, 20]
searches optimal configuration for mixed parallelism strategy based
on Legion [4], which is a high performance programming system
for heterogenous and parallel machines. However, none of those
algorithms take sparseness into account or provide solutions to
problems with such a scale.

These related works provide lots of insights on building efficient
model training systems. By learning their strength and weakness,
we develop XDL for supporting industrial problems with high-
dimensional sparse data.

3 ARCHITECTURE OF XDL
In this section, we introduce the architecture and the design philos-
ophy of XDL. Before the discussion, it is necessary to describe the
motivation of our design.

3.1 Network Characteristic of Deep Models
with High-dimensional Sparse Data

In recent years, deep learning based approaches have successfully
revolutionized algorithms applied in online businesses and achieved
state-of-the-art performance. As a pioneer work, DSSM [17] pro-
poses to model the relevance of query and document with a deep
network in the scenario of web search engine. The core architec-
ture of DSSM model follows an Embedding & MLP paradigm: first
mapping high-dimensional sparse inputs into low-dimensional em-
bedding space and then fitting the label with multi-layer perceptron
(MLP). This Embedding & MLP architecture motivates most of fol-
lowing work to design deep models with high-dimensional sparse
input from various applications such as video recommendation,
web search and advertising in e-commerce site. Representative
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networks include Wide & Deep Learning [8], Youtube deep mod-
els [10], DeepFM [15], Deep Interest Network (DIN) [32, 33] and
CrossMedia [12] etc. A thorough survey about deep models for
recommendation systems can be found in [31].

From an algorithmic perspective, Embedding & MLP based net-
work abstracts a family of these industrial models, which typically
breaks the learning from sparse data into two steps: i) Representa-
tion learning which captures information from high-dimensional
sparse input and embeds them into a low-dimensional space, ii)
Function fitting which models the relationship between dense em-
bedding representation and supervised label. For simplicity, we
refer to network of the first step as SparseNet and the second one
as DenseNet in the rest of this paper. Figure 1 illustrates this kind
of abstraction.

In the scenario of industrial applications, new deep models
should evolve rapidly to improve the business profit. Hence algorith-
mic scientists expect the training system to be simple-to-understand
and easy-to-use: new models should be designed in script codes
in a stand-alone perspective and run in parallel, leaving complex
details of distributed training hidden in background. Motivated by
these considerations, we design XDL, an industrial deep learning
framework aiming to build high-performance system for training
deep models with high-dimensional sparse data. We will show how
we tackle the challenges arising from high-dimensional sparse data
and propose an elegant design which follows the bridging strategy.

3.2 Design Philosophy of XDL and Bridging
Methodology

From the above, we can see that SparseNet and DenseNet in the
models with high-dimensional sparse data require different sys-
tem functionalities. DenseNet is made up of several dense layers
and requires high computation density on local machine. Several
DL frameworks including Tensorflow, MxNet and Pytorch have
been made open-sourced and such kind of dense networks can be
handled well in these frameworks. However, SparseNet contains
hundreds of billions of features which are generated from the raw
samples. Therefore, a successful DL framework that can handle
this scenario must have excellent distribution characteristic and
enough computational capability of sparse data. The existing DL
frameworks mentioned above are not well-designed for networks
involving high-dimension sparse data.

For better understanding the challenges of training deep models
with high-dimensional sparse data, let us look in detail of the scales
of SparseNet and DenseNet. The scale of our dataset is shown at
first. Table 1 shows typical volume of production data used in our
display advertising system for one day.

#Feature #sample per day avg.#ID/sample Disk space

1 Billion 1.5 Billion 5000 17TB

Table 1: typical problem scale

Table 2 shows network parameters statistic of some models used
in our daily tasks. Obviously, it is the SparseNet that contributes
most of difficulties for these models. DenseNet follows the tradi-
tional setting that existing deep learning frameworks hold. Besides,

SparseNet needs to handle the practical I/O issue of input data
with terabytes volume as well as complex and heavy parallelism
issue. These challenges make the training of SparseNet to be quite
different and critical from that of DenseNet.

Models
(SparseNet)

Input
Dimension

Network
Parameter

Output
Dimension

MLP 1 Billion 18 Billion 1440
DIN 1 Billion 18 Billion 33438

CrossMedia 250 Million 5 Billion 1464

Models
(DenseNet)

Input
Dimension

Network
Parameter

Output
Dimension

MLP 1440 1.2 Million 1
DIN 33438 1.7 Million 1

CrossMedia 1464 1 Million 1

Table 2: Network statistic for Multiple Layer Perception,
Deep Interest Network [32] and Crossmedia [12] models.

Above all, we designed XDL whose architecture is shown in
Figure 2. Follow the divide-and-conquer strategy, we propose a
brand-new bridging architecture, in which the training system is
bridged with two main sub-systems:

• Advanced Model Server (AMS). AMS offers a sophisticat-
edly designed distributed system that provides extreme effi-
ciency and scalability for training SparseNet. AMS handles
rapidly evolving representation learning algorithms with
large scale sparse inputs. Both embedding dictionary and
models like CNN/RNN are supported to map large sparse
inputs into dense vectors.

• BackendWorker (BW). BW follows a common deep learn-
ing setting to learn from low-dimensional inputs and allows
adopting any open-source DL frameworks as its backend.
With such flexibility, our algorithmic scientists can easily
try out new model structures involving DNN [17], attention
mechanism [32] or Gated Recurrent Units [33] to model the
complicated and evolving user behavior.

In the forward pass, the backed workers first read data from I/O
module, and then send feature ID requests to the AMS. The AMS
will compute the embedding vectors according to the IDs and send
them back to the backend workers. The workers will also receive
the updated dense net model parameters from last iteration. After
collecting all the dense input vectors and the model parameters,
the workers will perform sum-pooling on the input vectors and
feed the result into the dense net. In backward pass, the data flow
is reversed and the gradients are computed by the workers. AMS
will then collect the gradients for both dense net and the sparse
net. Parameter updates will be performed at the server side using
solvers like Adam [22] or Momentum SGD. More details about the
implementation and optimization of AMSmodules will be described
in next section.

XDL has high performance and good scalability, so it is capa-
ble of supporting industrial productions. Starting in 2016, XDL is
used in training CTR prediction model in target advertising depart-
ment. Running on hundreds of machines, XDL trains a family of
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SparseNet

DenseNet

CNN-network

RNN-network

Embedding dictionary

Sparse Input Label

Representation Learning

Function Fitting

D d

Figure 1: Abstraction of Embedding &MLP network architecture, whichmostly consists of SparseNet andDenseNet. SparseNet
maps original sparse input (with dimensionality of Dwhere D scales up to billions) into low-dimensional representation (with
dimensionality of d which traditionally scales up to thousands). DenseNet learns the function that fits data.
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Figure 2: Architecture of XDL. The server and worker don’t need to have the same rank. And they could be deployed on the
same physical node to improve communication efficiency.
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billion-parameter DNN models, supporting businesses in hundreds
of scenarios.

In order to facilitate deployment on various computing platforms,
XDL can be scheduled by multiple resource management platform,
like Yarn, and provides data I/O interfaces to various data storage
systems, like HDFS and Kafka. Good compatibility of XDL enables
rapid upgrades in business applications.

3.3 Advanced Model Server
Learning the architecture design from Parameter server, we de-
signed Advanced Model Server (AMS), which is a distributed sys-
tem managing the training of SparseNet and DenseNet. AMS is
responsible for storing and updating all the parameters, including
SparseNet and DenseNet. Therefore, parameter placement becomes
a critical challenge for a high-performance design. With considera-
tion of stability and availability of online business, fault tolerant
should also be well concerned.

Parameter Placement
As both sparse parameters and dense parameters are stored on
AMS, parameter placement algorithm should handle the different
characteristics of these two kinds of parameters. On one hand,
sparse parameters have heavy memory usage, for the dimension
of sparse features could be up to tens of billions. However, in each
mini-batch, only a few feature IDs are requested by workers, thus
indicating that sparse parameters have low I/O pressure. Moreover,
the memory usage of sparse parameters is changeable along with
the training process because the samples will bring new IDs into the
sparse parameters continually. On the other hand, dense parameters
require low memory usage but have heavy pressure on I/O because
workers requested the whole dense parameters in each mini-batch.

According to the above analysis, our key-value storage uses
hash-map as low-level data structure for sparse parameters in AMS,
which also exists in traditional parameter servers. So we can divide
the hash table bucket averagely on each server, relieving the mem-
ory storage pressure on servers. Unfortunately, this process will
cause a huge increase of request numbers from workers. To address
this issue, we union the worker requests on worker-side before
the embedding dictionary lookup. This optimization gives us a big
speedup in practice. As for dense parameters, the I/O pressure of
each parameter will be computed and separated averagely on each
server within the memory constraints.

Fault Tolerant
With the rapid growth of sample amount and model complexity,
off-line training takes more and more time for a specific deep model.
When some roles in the DL system fails, re-training from the very
beginning is very expensive in view of time and resources. More-
over, in some online learning scenarios, stability and availability
are very important. Therefore, fault tolerant is carefully designed
in XDL. AMS is made up of a scheduler and several servers. Servers
keep synchronized with scheduler using regular heart beat. Dur-
ing the training process, the snapshot of the whole models will be
stored in a certain place. If any server fails for some reason, the
scheduler will notice the abnormal state and set the whole AMS
system to be not ready until the server is restarted by yarn or any

other scheduling system. If AMS is ready, the scheduler will notice
the servers to restore from the latest snapshot and continue the
training process.

Meanwhile, as the workers are responsible for reading samples,
the reading state of each worker is also stored in AMS as a special
parameter. When workers fail and get restarted, their reading states
can be recovered by pulling the parameter from AMS. With this
effort, no samples are lost or read redundantly during the training
process by workers.

Asynchronized Update
XDL supports both synchronized mode and asynchronized mode.
For synchronized mode, in each iteration, the workers pull parame-
ters and push updates exactly once. And each iteration won’t finish
until all AMS receive updates from all the workers and apply the av-
eraging gradient on the parameters. In asynchronized mode, there
is no such a concept of iteration. The workers operate indepen-
dently. Therefore each worker can move on to the next step as soon
as it push its updates to the AMS, without waiting for other work-
ers to finish their updates. Also, in the server side, updates from
the workers are applied in a lock-free style. We use this approach
since updates for the embedding table is very sparse and conflict
rarely happens. For the dense DNN, though each update may not be
successfully applied on the entire model, there is always only one
version of the model globally. Therefore the lock-free style update
can be seen as adding a mask on the model to randomly drop part
of the gradients. In practice, we found that asynchronized mode
can achieve much bigger system throughput, with very little model
performance lost.

4 SYSTEM IMPLEMENTATION AND
OPTIMIZATION

4.1 I/O
In production scenario, the inputs of our training system, such as
samples and initial model, are usually stored in different locations.
For example, some of the samples are streamed from an online queu-
ing system, while others are retrieved from an offline distributed
file system. The goal of I/O module design is to maximize the input
bandwidth usage from data sources, such as HDFS, Kafka, etc.

It is well known that I/O bandwidth in distributed ML system
has become one of the biggest bottlenecks. Since we use existing
DL frameworks as computational backends, how to swallow data
faster becomes a more critical problem. Therefore, we implement
various optimizations to maximize the I/O throughput.

First, there exists a lot of repeated features between different
samples. These repetitions come from the very beginning of our
data source: user behavior. One user clicking on two different links
will produce two different samples containing repeated features
of the same user. Figure 3 illustrates the structure of repetitions.
Compression could be done to optimize storage, communication
and computation efficiency.

Hierarchical sample compression:
XDL takes full advantage of the fact that ID repetition exists

between samples. In preprocessing phase, the raw samples are orga-
nized into multi-prefix trees, which drastically reduces the storage
space and the communication cost. In training phase, a number of
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Figure 3: repetition

prefix trees are grouped into mini-batches of user-defined batch
size. This compression also brings benefits for computation as it
reduces duplicated embedding vector computation. If the total sam-
ple size of prefix trees exceed batch size, the last prefix tree will be
split.

Figure 4: I/O data and computation compression. In the
data-preprocessing stage, multi-prefix trees are produced
for mini-batch generation of training stage.

An example of hierarchical sample compression is shown in
figure 4. The raw samples are organized into two different 3-layer
prefix trees. The first, second, and third layer of the trees represents
user feature, ad feature and creative feature respectively. In training
phase, the last prefix-tree is split with respect to batch size of 6.
Two auxiliary tensors named indicator are constructed in order to
indicate the relationship between adjacent layers.

4.2 Work Flow Pipeline
Work flow pipeline is a common technology to speed-up the pro-
gram running process. Making the stages in the program over-
lapped in timeline with multi-thread technologies, considerable
running time can be saved. There are also several kinds of work
flow pipelines implemented in XDL.

In order to maximize the I/O throughput, we pipeline the process
with threads. A complete training iteration is divided into three
stages: 1) reading samples and group them into mini-batches 2)
pre-fetching the parameter indexes in mini-batches from key-value
store or input data for calculation on servers; 3) pull model pa-
rameters and do forward/backward propagation. Pipeline exploits
thread-parallelism by overlapping the execution of the three stages.

As shown in Figure 5, jobs on these three stages are scheduled
to three different thread pools respectively. And these three thread
pools coordinate through a lock-free queue. If GPU is used, data in

mini-batches and contexts are copied onto GPUs asynchronously
using cudaMemcpyAsync() function in different streams.
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Figure 5: The training iteration consists of three stages, the
pipelining is used to maximize the parallelism

Besides the pipeline in I/O implementation, a work flow pipeline
between SparseNet and DenseNet is designed to further improve
the performance of XDL. In this situation, as the input of DenseNet
is the output of SparseNet, the result of SparseNet can be pre-
computed before the previous training process of DenseNet ends.
Assuming that the training time of SparseNet and DenseNet are
Tsparse and Tdense respectively, the total runtime will be reduced
from Tsparse + Tdense to max{Tsparse ,Tdense }. In this scenario,
the efficiency of training process is significantly improved with
only little lost of model performance because when the output of
SparseNet is prefetched, there may exist some sparse IDs which are
not updated. So this kind of pipeline is often adapted when there is
few common sparse IDs between the neighbor mini-batches.

XDL also allows algorithm scientists to build pipelines that con-
nect any stage in the training process with only a few lines of codes.
A deep model can be divided into any number of stages. Algorithm
scientists have variety of choices with consideration of performance
and accuracy to build pipelines in the training process.

4.3 Optimization for Advanced Model Server
In order to improve the efficiency of AMS, optimizations are adopted
in various aspects.

To speedup the K-V query in the embedding process, the power of
GPU is utilized in XDL. GPU has two advantages. First, the memory
bandwidth of GPU is higher (700GBps for Nvidia P100, 100GBps for
Intel E5-2699 v4). Second, it runs in parallel on thousands of cores
(3584cores for Nvidia P100). Therefore, we can implement much
faster embedding dictionary lookup on GPU. The disadvantage of
GPU is that GRAM size is limited. To handle this problem, only the
index of embedding dictionary will be prefetched into GRAM.

As AMS plays a role of parameter server in most scenarios, there
exists a huge amount of network communications between AMS
and backend workers. The amount of network communications can
be extremely huge when the degree of parallelism is high. In this
situation, the run time consumed during network communication
becomes a key part of the total run time. XDL adopts Seastar[28]
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as its communication library and many effective optimizations are
made based on the Seastar framework. The technologies such as
zero-copy and CPU-binding are involved to guarantee that network
communication won’t become the bottleneck of the whole training
process.

In deep learning, batch size is a very important hyper-parameter.
Some models show good performance when small batch size is
used while some models prefer a large one. This requires that the
DL frameworks should be capable of handling different sample
batch sizes. As we mentioned before, CPU-binding is an important
technology in AMS. Each thread in AMS is bounded with a CPU
core so the thread switching time between different cores is saved.
When the sample batch size is small, this CPU-binding mechanism
enables high performance of computation on AMS. However, if the
sample batch size is large, there will be too many IDs to be handled
by one single thread. In this situation, AMS has a self-adaptive
mechanism in which an extra thread pool is created for the purpose
of dealing with the large number of IDs. With this optimization,
AMS shows excellent performance on both small and large sample
batch size.

4.4 Online Learning with XDL
Online learning methodology is widely used in industry recently
for its ability to capture the changes of customer behaviors in real
time. An effective online learning model is very valuable in many
business scenarios. XDL provides a series of mechanisms for online
leaning.

Feature Entry Filter
As we mentioned before, the memory usage of sparse parameters
is changeable along with the training process because the samples
will bring new IDs into the sparse parameters. Thus the model
storage is continuously increasing on AMS. Therefore, the scale
of IDs must be controlled within a certain level. To address this
issue, XDL provides several feature entry filter mechanisms such as
probability-based filter and counting-bloom filter. In this situation,
the low-frequency IDs will be dropped before the training process
as they contribute much less to the models. Meanwhile, the scale
and the memory storage of the online models are well controlled,
which guarantees the stability of the online system.

Incremental Model Export
With the continuous training process, when the model storage
reaches hundreds of GBs or even higher, the full model export will
become extremely expensive with consideration of time and compu-
tational resources. So XDL provides the incremental model export
for the online training and inference systems. Each incremental
model only requires a small amount of storage and is very easy to
deployed on the online system.

Feature Expire
With the same purpose with Feature Entry Filter, feature expire
mechanism also controls of the size of model. During the online
training process, the features which are not updated for a long time
would become useless and could be deleted. XDL allows algorithm

experts to write their own feature expire functions and customize
the feature expire plan.

4.5 User Interface
XDL provides python APIs for algorithm scientists to develop new
deep learning models. These APIs let users focus on model itself
without concerning about I/O efficiency, distribution strategy, sys-
tem consistency and low-level communication. Coding and debug-
ging on a parallelized model could be almost the same as on a serial
one. With details on parallelization and optimization being hidden,
it becomes very easy for users to deploy newly developed models
onto massive GPU clusters in sandbox and production environ-
ments. Most of the time, scientists only need to modify the dense
net structure to test new ideas. Users have full control on backend
workers by running user-defined codes. It is also very convenient
to modify the data flow and the sparse net components to try out
more aggressive algorithm innovations.

5 XDL ECOSYSTEM
Besides XDL, Alibaba also open-sourced XDL Algorithm Solu-
tion and Blaze Inference Engine as follows, which comprise an
ecosystem together with XDL framework. All these XDL-based
tools are available at https://github.com/alibaba/x-deeplearning.

XDL Algorithm Solution includes several effective models which
are successfully adopted in the advertising business of Alibaba,
such as Deep Interest Network (DIN) [32], Deep Interest Evolution
Network (DIEN) [33], Tree-based Deep Match (TDM) [35], etc.

Blaze Inference Engine is a high-performance inference engine
that enables massive real-time computation for online advertising
business, leveraging techniques like kernel fusion and low-precision
inference.

XDL ecosystem sets up an example and a guideline for advertis-
ing industry. More and more companies have adopted XDL as their
off-line or online deep learning tools.

6 EVALUATION
In this section, we provide detailed evaluation of the optimization
strategies described in previous section. The experiments are con-
ducted on nodes interconnected with 25Gbps ethernet. Each node
equips with 2 Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz (96
cores) and 512GB RAM. In compiling, we use GCC 4.8.5 with flag
-O2 -fopenmp -mavx2.

In our practice, when choosing the backend, MxNet or Tensor-
Flow performs almost the same as they have equivalent perfor-
mance for dense net computation. In the following evaluations, we
choose Tensorflow as XDL’s computation backend.

6.1 Dataset
In our experiment, we train a DNN model for Click Through Rate
(CTR) prediction problem using an open dataset published by [25].
This dataset is sampled with 1% ratio from Taobao’s e-commerce
recommending system. Statistics of this dataset is shown in Table
3.

The open dataset includes three aspects: user’s interest, Ad’s
characteristic and context. Each of them is represented by high-
dimensional sparse IDs. Using XDL’s python interface, we build the



DLP-KDD’19 , August 5, 2019, Anchorage, AK, USA Biye and Chao, et al.

Statistics #Users #Items #Pageviews #Clicks

Counts 0.4M 4.3M 84M 3.4M

Table 3: Benchmark dataset statistics (M = Millions)

model based on the SparseNet + DenseNet abstraction. In SparseNet,
we use embedding dictionary to turn each ID into a dense vector
with dimension of 18. It follows by a grouped sum-pooling to reduce
these vectors into 23 vectors. In DenseNet, we use a 3-layer fully-
connected DNN, which contains about 100K parameters. (In this
DNN, There are 23*18 nodes in input layer, 200 nodes in first layer,
80 nodes in second layer, and 1 node in output layer.) The model is
trained using the clicked label to estimate the CTR.

6.2 Subsystem Evaluation
In order to understand the performance of XDL, we will evaluate
the optimization strategies one by one to see how much benefit
we can get from each of them. The following experiments run in
the same environment using the open dataset described above. All
the experiments run on 200 workers (except scalability experiment)
with 80 AMS in CPUmode.We allocate 8 CPU cores for eachworker,
and each AMS will occupy all 96 CPU cores in one machine. The
XDL runs in asynchronized mode and the updates are lock-free, as
described in Section 4.3

Hierarchical sample compression:
The hierarchical sample compression in I/O module brings great

speedup to both communication and computation. As on averaged,
each user id can repeat 57 times in the open dataset, it means the
compression ratio for the common features shared by those users
could be 57. In order to evaluate how much performance gain we
can obtain by using sample compression, we resample the dataset
to construct new datasets with different averaged compression ra-
tio. We then compare the XDL throughput when running on those
datasets. The results can be seen in Figure 6.
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Figure 6: Compression ratio v.s. Throughput. Runs on 200
workers, batch size is 5000.

Large batch size:
Using large batch size will have fewer iterations and therefore

it can drastically reduce the overhead of data-copy and commu-
nication. Even though Keskar et al [21] found that training with
large-batch can result in sharp minima and hurt generalization.
Several techniques [13, 16] have been proposed to mitigate the
problem. We therefore tend to use larger batch size to improve the
throughput. The throughput of AMS under different batch size is
shown in Figure 7.
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Figure 7: Batch size v.s. Throughput. Compression ratio = 57,
using 200 workers.

Scalability:
We also test the scalability of XDL and compare it to native

TensorFlow on various number of workers, with 80 AMS. Again,
each worker uses 8 CPU cores and each AMS uses 96 CPU cores.
Both XDL and Tensorflow use lock-free style asynchronized update.
Results are shown in Figure 8. XDL consistently preforms better
due to its optimizations for communication and repeated features.
As we fix the number of AMS, we achieve almost linear scalability
when running in the asynchronized mode.
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7 CONCLUSION
We have introduced a deep learning framework named XDL, which
is very powerful for high-dimensional sparse dataset with the
SparseNet + DenseNet abstraction. With high-dimension oriented
design and system optimization, XDL can be much faster than na-
tive Tensorflow on real-world dataset. Our algorithmic scientists
can easily develop new models using the flexible API of XDL to
support the rapid evolving business in Alibaba.

With the open-source process of XDL ecosystem, XDL can be
further developed in the future. First, advanced acceleration tech-
niques like TVM [7], deep gradient compression [24] and mixed
precision training [26] are being tested and will be deployed soon.
Second, as an open solution for parameter storage and updating,
AMS shall have more flexible data flow and model structure to meet
the requirements from the newest models such as Memory Network
and Dynamic Computation Graphs.
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