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ABSTRACT
Recommendation system has been widely used in search, online 
advertising, e-Commerce, etc. Most products and services can be 
formulated as a personalized recommendation problem. Based on 
users’ past behavior, the goal of personalized history-based recom-
mendation is to dynamically predict the user’s propensity (online 
purchase, click, etc.) distribution over time given a sequence of 
previous activities. In this paper, with an e-Commerce use case, 
we present a novel and general recommendation approach that 
uses a recurrent network to summarize the history of users’ past 
purchases, with a continuous vectors representing items, and an 
attention-based recurrent mixture density network, which outputs 
each mixture component dynamically, to accurate model the pre-
dictive distribution of future purchase. We evaluate the proposed 
approach on two publicly available datasets, MovieLens-20M and 
RecSys15. Both experiments show that the proposed approach, 
which explicitly models the multi-modal nature of the predictive 
distribution, is able to greatly improve the performance over various 
baselines in terms of precision, recall and nDCG. The new modeling 
framework proposed can be easily adopted to many domain-specific 
problems, such as item recommendation in e-Commerce, ads tar-
geting in online advertising, click-through-rate modeling, etc.

KEYWORDS
recommender system, personalization, mixture density network, 
recurrent neural network, deep learning

1 INTRODUCTION
Recommender systems have become a critical part that powers 
search, online advertising and e-commerce industry, etc., which 
generate hundred of billions of dollars of revenue. In online adver-
tising, the recommendation system tries to recommend the best 
targeted ads to shown to each user; in e-Commerce search, it helps 
each buyer to obtain the best items of interest from extremely large 
inventories that generally at tens of billions size. When you come 
to any e-Commerce website, without starting search, based on your 
recent view, click and purchase activities, an extremely critical task 
from the recommendation system is to recomend "items you might
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like" that will eventually lead to an max probability of shopping
event happens.

Among the most popular techniques are matrix factorization
(MF) based models, e.g. [14, 17, 24] which decompose a user–item
matrix into user and item matrices. Such an approach treats rec-
ommendation as a matrix imputation (completion) problem, where
missing entries in the original matrix are estimated by the dot prod-
uct between corresponding user and item factors. Despite their
popularity in recommender systems, MF-based models have their
limitations. First, MF-based models aim at reconstructing user his-
tory, instead of predicting future behaviors. The underlying as-
sumption is that user preference is static over time. Second, most
of such approaches omit ordering information in a user history.
The purchase of a diaper is generally happened before purchas-
ing an infant-powder, e.g. To address these issues, an increasing
number of recent works have started to treat user behaviors as
sequential events, and predict future events based on history [see,
e.g., 9, 11, 27].

Recurrent neural networks (RNNs) are one of the most widely
used techniques for sequence modelling [see, e.g., 1, 22, 26]. These
RNNs have recently been considered for a history-based recommen-
dation system [see, e.g., 11, 27, 28]. In the implicit feedback scenario,
where binary user-item interactions are recorded, the previously
works mostly formulate recommendation to a classification task.
For an large-scale recommender system, such as in e-Commerce, it
contains billions of items, it raised a very big challenge to scalability
- both in training time and online prediction. For example, in the
work by De Boom et al. [9], they demonstrated such an approach
is capable to recommend relevant items to users on their dataset
containing only less than 6 million songs. From the business side,
for example, user’s purchase interest is sequentially correlated or
effective within time window. For example, a user who just pur-
chased a bundle of diapers will most probably not purchase it again
within a week or for her next immediate purchase. Thus, sequen-
tial modeling with RNNs is a nature choice for historical-based
recommendation.

On the other hand, it has been observing that in real-world, most
underlying data distributions are indeed very dynamic - sparsity,
time-changing, multi-modal (mixture of distributions) of predictive
distribution in stead of single family of distribution [5], etc. Very re-
cently, the dynamic vector representation, to capture time-changing
semantics, was proposed [2] and explored, where in their work,
it shown that using Kalman Filter to model sematic vector tran-
sition can improve the representation of words and downstream
applications.



DLP-KDD’19 , August 5, 2019, Anchorage, AK, USA Tian Wang, Kyunghyun Cho, and Musen Wen

In this work, we propose a very general modeling framework and
use e-Commerce recommendation as an specific use case. Specif-
ically, we present an approach to history-based recommendation
by modeling the conditional distribution of future items’ vectors.
The proposed model uses a recurrent network to summarize user
history, and an attention-based recurrent mixture density network,
which generates each component distribution in a mixture network
sequentially. In this way, we both addressing the time-varying and
complex data distribution simultaneously: a multi-modal condi-
tional distribution, which much better approximates the real-world
distribution, is modeled sequentially through the Recurrent Neural
Network (RNN)’s nature.

The proposedmodel is then evaluated on two open source datasets
- MovieLens-20M [10] and RecSys15 1. Experimental results shows
that our proposed model improves recall, precision, and nDCG
significantly, compared to various other methods. Further, a a com-
prehensive analysis is conducted to show that by increasing the
number of mixture components improves recommendations by
better capturing multi-modality in user behavior, which is in accor-
dance to real-world assumptions of multi-modality of propensity
distributions in various user behaviors (click, purchase, etc.)

The proposed model explores a new direction of recommender
systems by solving predictive (mixture) distribution estimation
problem with continuous itemuser representation. We conclude
with some directions for future future research.

2 ITEM RECOMMENDATION
2.1 Recommendation Framework
For easy illustration, we start with formulating the problem as an
item recommendation under the context of e-Commerce shopping.
In the implicit feedback setting, a user’s behavior is recorded as a
sequence of interacted items, which can be a one of various actions,
such as searching, clicking, viewing and purchase. For simplicity,
we focus on the clicking and viewing behavior. We frame the task
of recommendation as a sequence modelling problem with the goal
of predicting future clickview propensity directly.

Given a splitting index t and a user behavior sequence S =
{s1, s2, ..., sL}, the sequence S can be split into the history part
S<t = {s1, ..., st−1} and the future part S≥t = {st , ..., sL}. A recom-
mender system, parameterized by w, aims at modelling the proba-
bility of clicking and viewing future items conditioned on historical
items P(S≥t |S<t ,w) that she has interacted with (i.e. clicked and
viewed). To be concise, we omit w in our notation and assume that
the items in S≥t are independent. Thus the conditional probability
of future items being view given history can be written as a product
of individual conditional probability for each item,

P(S≥t |S<t ) =
L∏
i=t

P(si |S<t )

2.2 Classic Count-based Approach
The conditional probability P(si |S<t ) can be approximated by n-
gram conditional probability

P(si |S<t ) ≈ P(si |S
t−(n−1)
t−1 ), (1)

1http://2015.recsyschallenge.com/

where
S
t−(n−1)
t−1 = {st−1, st−2, ..., st−(n−1)}

represents the past n − 1 viewed items. This is particular true in
e-Commerce setting because shopping has temporal correlations.

An n-gram statistics table can then be constructed to record the
number of occurrence for each item n-gram in the training corpus.
Based on this, the approximated conditional probability can be
expressed as

P(si |S
t−(n−1)
t−1 ) =

c(si , st−1, st−2, ..., st−(n−1))∑
j c(sj , st−1, st−2, ..., st−(n−1))

,

where c(·) is the count in the training corpus. When n equals two,
such setting is a similar variant of item-to-item collaborative filter-
ing [19], where the temporal dependency among items is ignored.

Conditioned on a seed item sj in the user history, item-to-item
collaborative filtering recommends item ŝ having the highest co-
occurrence probability

ŝ = argmax
s

P(s |sj ).

The bi-gram statistics table contains the number of occurrence for
each item pair c(si , sj ),where si ∈ S≥t , sj ∈ S<t . One can estimate
item-to-item conditional probability by

P(si |sj ) =
c(si , sj )∑
k c(sk , sj )

=
c(si , sj )

c(sj )
(2)

With pairwise conditional probability, P(si |S
t−(n−1)
t−1 ) can be ap-

proximated with P(si |sk ), where sk is a randomly sampled item
from previous n − 1 viewed items: sk ∈ S

t−(n−1)
t−1 .

To smooth the estimation, we take the average of the approxi-
mated probability as our final estimation

P(si |S
t−(n−1)
t−1 ) ≈

1
n − 1

t−(n−1)∑
k=t−1

P(si |sk ) (3)

3 ATTENTION-BASED MIXTURE DENSITY
RECURRENT NETWORKS

In this section, we introduce our proposed the attention-based
mixture density recurrent networks to tackle the sequential recom-
mendation problem.

The major limitation of such count-based method is data sparsity,
as a large number of n-grams do not occur in the training corpus.
In e-commerce, items will be sold out very quickly as well - the
inventory changed quickly. To address the data sparsity issue in
count-based language model, Bengio et al. [4] proposed neural
language model, in which each word is represented as a continuous
vector.

In our approach, we take a similar idea by representing each item
si using a continuous vector vi representation. Unlike earlier works
using continuous representation as input only, and modeling the
user behavior as a classification task in discrete space, our proposed
approach instead choose to model user behavior as the probability
density function over item embedding space fp (vi |S<t ). Items with
the highest likelihoods are recommended accordingly. By doing
so, our recommender system could further leveraging the external
information contained in the embedding space, and potentially
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avoid the performance degradation in large-scale recommender
system with classification as is shown in De Boom et al. [9].

In following subsections, we discuss our approach via three
sequential components.

3.1 Item Representation
Item embedding is in itself a research problem. In our setting, we
build up item embedding in a way similar to continuous skip-gram
model [21] by treating a user’s viewing history as a sentence, and
each item as a word. Under this setting, the distance between two
items in embedding space could be explained by their co-occurrence
chance in a sequence. In other words, the closer the distance is, the
higher chance two items have to be viewed by the same user.

Once we have the pre-trained embedding, we hold it fixed during
the modeling training.

An item embedding matrix E can be built, where each row is
the representation of the item. We denote that for each item si , its
d-dimensional vector representation vi could be written as

E(si ) = vi ∈ Rd .

3.2 Historical Interaction Representation
A user’s interaction history is described as a sequence of viewed
items S<t = {s1, ..., st−1}. In this paper, we propose and experiment
with three alternatives to represent user history.

Continuous Bag-of-Items Representation (CBoI). The first pro-
posed method is to bag all the items in S<t into a single vector
s ∈ [0, 1] |E | . Any element of s corresponding to the item existing
in S<t will be assigned the frequency of that item, and otherwise
0. User history representation p is calculated by multiplying item
embedding matrix E from left with s:

p = E⊤s.
We call this representation p a continuous bag-of-items (CBoI). In
this approach, the ordering of history items does not affect the
representation.

Recurrent Representation (RNN). Recurrent neural networks (RNN)
have become one of the most popular techniques for modelling
a sequence with ordering information. Long short-term memory
units [LSTM, 13] and gated recurrent units [GRU, 8] are the two
most popular variants of RNNs. In this paper, we start with GRUs,
which have the following updating rule:

rt = σ (Wr xt + Ur ht−1)

ut = σ (Wuxt + Uu (rt ⊙ ht−1))

h̃t = tanh(Wxt + U(rt ⊙ ht−1))

ht = (1 − ut ) ⊙ ht−1 + ut ⊙ h̃t ,

(4)

where σ is a sigmoid function, xt is the input at the t-th timestep,
and ⊙ is element-wise multiplication.

Once we map each item to its distribute vector representation,
we have a sequence of the item vectors

V<t = {E(s1), ...,E(st−1)} = {v1, ..., vt−1}

After converting each item into a vector representation, the se-
quence of item vectors V<t is fed into a recurrent neural network.

We initialize the recurrent hidden state as 0. For each item in the
history, we get

zl = ϕ(vl , zl−1), (5)
for l = 1, ..., t − 1, where ϕ is GRU recurrent activation function
defined in Eq. (4).

With Z<t = {z1, ..., zt−1}, recurrent user representation p is
computed by

p =
∑t−1
i=1 zi
t − 1

.

Attention-based Representation (RNN-ATT). Inspired by the suc-
cess of attention mechanism in machine translation [1], the pro-
posed method incorporates attention mechanism into recurrent
history representation when using with sequential generation later
described in Eq. (9). After Z<t is generated following the same
way mentioned in Eq. (5), we use a separate bidirectional recurrent
neural network to read V<t , and generate a sequence of annotated
vectors A<t = {a1, ..., at−1}. For a mixture vector ml , attention-
based history representation pl is calculated as

pl =
t−1∑
i=1

αl,i zi , (6)

where the attention weight αl,i is computed by

αl,i =
exp(score(ai ,ml−1))∑t−1
j=1 exp(score(aj ,ml−1))

. (7)

In Eq. (7), ml−1 is the hidden state for the (l − 1)-th step from the
recurrent neural network in sequential generation defined in Eq.
(9), and score(aj ,ml−1) function defines the relevance score of the
j-th item with respect to ml−1.

3.3 Mixture Density Network
A mixture density network [MDN, 6] is used to formulate the like-
lihood of an item vector vi conditioned on user history S<t (repre-
sented by p) as a linear combination of kernel functions

fp (vi |p) =
m∑
j=1

α j (p)ϕ j (vi |p)

wherem is the number of components used in the mixture. Each
kernel is a multivariate Gaussian density function,

ϕ j (vi |p) =
exp(− 1

2 (vi − µ j (p))T Σj (p)−1(vi − µ j (p)))√
|2πΣj (p)|

. (8)

In order to reduce the computation complexity, the covariance
matrix Σj is assumed to be diagonal, containing only entries for
element-wise variances. Under this model, for the i-th mixture
component, we need to estimate following parameters

µi (p) ∈ Rdemb ,

diag(Σi (p)) ∈ Rdemb
>0 ,

αi (p) ∈ R>0.

Bishop [6] proposed to use a feed-forward network to generate
all components simultaneously. We adopt the same technique in
our setup.
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Figure 1: Architecture of sequential generation with
attention-based history representation

After a user history is encoded into a single user representation
p ∈ Rdhidden as explained in Sec. 3.2, the parameters for the i-th
mixture are generated by

µi (p) = tanh(Wµip),

diag(Σi (p)) = log(exp(WΣip) + 1),

αi (p) =
exp(Wα ip)∑
j exp(Wα jp)

,

whereWµi ∈ R
demb×dhidden ,WΣi ∈ R

demb×dhidden , andWα i ∈ R
1×dhidden .

Noticing that in this approach, each component is now indepen-
dent to the rest components when being generated. In order to make
new components aware of what has been generated, we propose
further a new approach to generate components sequentially.

For a mixture density network with k components, a recurrent
neural network iterates k steps. And in each iteration, it takes the
history representation p as input and generates the parameters for
one mixture component.

Suppose at the l-th step, the l-th component’s parameters are
calculated as

ml = ϕ(p,ml−1),

µl = tanh(Wµml ),

diag(Σl ) = log(exp(WΣml ) + 1),
(9)

whereϕ is a GRU activation function,Wµ ∈ Rdemb×dhidden andWΣ ∈

Rdemb×dhidden are trainable weights shared among all mixtures.
After all {mi }

k
i=1 are generated, the mixture weight αl for the

l-th mixture component is calculated by

αl =
exp(Wαml )∑
j exp(Wαmj )

,

where Wα ∈ R1×dhidden .
Alternatively with the attention-based history representation

described in Eq. (6), p is replaced by pl at the l-th iteration in Eq.
(9).

At the l-th step, for annotated vectors A<t = {a1, ..., at−1},
attentionweightαl,i is computed through Eq. (7), where dot product

is used as scoring function:

αl,i =
exp(aTi ml−1)∑t−1
j=1 exp(a

T
j ml−1)

.

Attention-based recurrent representation pl is computed by

pl =
t−1∑
i=1

αl,i zi ,

where zi is the output from recurrent representation calculated in
Eq. (5). Parameters for the l-th component is then generated by

ml = ϕ(pl ,ml−1)

µl = tanh(Wµml ),

diag(Σl ) = log(exp(WΣml ) + 1).

The architecture described above for sequential generation with
attention-based history representation is illustrated in Fig. 1. The
attention mechanism allows a model to automatically select items
relevant to each mixture component in the user history.

4 RELATEDWORK
4.1 A History-based Recommender System

with a Recurrent Neural Network
RNNs were first used to model a user history in recommender sys-
tems by Hidasi et al. [11]. In this work, a RNN was used to model
previous items and predict the next one in a user sequence. Tan
et al. [27] improved the recommender system performance on a
similar architecture with data augmentation. To better leverage
item features, Hidasi et al. [12] introduced a parallel RNN architec-
ture to jointly model user behaviors and item features. Wu et al.
[28] proposed a new architecture using separate recurrent neural
networks to update user and item representations in a temporal
fashion.

There are two major differences in the proposed approach from
the previously mentioned work. First, our work frames the task
of implicit-feedback recommendation as density estimation in a
continuous space rather than classification with a discrete output
space. Second, unlike most of the earlier works, where the whole
systems were trained end-to-end, the proposed model leverages
an external algorithm to extract item representation, allowing the
system to cope with new items more easily.

More recently, De Boom et al. [9] proposed a history-based rec-
ommender system with pre-trained continuous item representa-
tions as a regression problem. In their work, a recurrent neural
network read through a user’s history, as a sequence of listened
songs, and extracted a fixed-length user taste vector, which was
later used to predict future songs.

The major difference between the proposed work and the work
by De Boom et al. [9] is the assumption on the number of modes in
the distribution of user behaviors. The proposed model considers
the mapping from history to a future behaviour as a probability
distribution with multiple modes, unlike their work in which such a
distribution is assumed to be unimodal. We do so by using a variant
of mixture density network [6] to explicitly model user behavior.
Their approach can be considered as a special case of the proposed
model that degenerated to a single mixture component.
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4.2 Continuous Item Representation
Inspired by the recent advance in word representation learning
[21], various methods have been proposed to embed an item in a
distributed vector that encodes useful information for recommen-
dation. Barkan and Koenigstein [3] learned item vectors using an
approach similar to Word2Vec [21] by treating each item as a word
without considering the order of items. Liang et al. [18] jointly
factorized a user-item matrix and item-item matrix to obtain item
vectors. In the work by Liu et al. [20], a vector was learned for each
pin in Pinterest using a Word2Vec inspired model.

In this paper, we treat item representation as a static prior knowl-
edge, which could be extracted with external knowledge, or trained
with any other models. Such setting enables the use of unrestricted
architecture of item representation, and has potential to incorporate
new items with content information into the existed recommender
system. Under this setup, the proposed model focuses on utilizing
the existed embedding space to model user behavior.

5 EXPERIMENTAL SETTINGS
5.1 Models
To illustrate the effectiveness of the newly proposed method, we
experiment with the model under multiple settings. The following
models are experimented and compared:

(1) CBoI-FF-n
(2) RNN-FF-n
(3) RNN-RNN-n
(4) RNN-ATT-RNN-n,

where n denotes the number of mixture components in a mixture
density network. We experiment with four n’s: 1, 2, 4, and 8. The
number of mixture components is used to explore the approxima-
tion to the real-data distribution, which we don’t know and don’t
assume before hand.

Notice that, whenn is equal to 1, a mixturemodel can only output
a unimodal Gaussian distribution. This is similar to the work by
De Boom et al. [9], where regression can be viewed as an unimodal
Gaussian with an identity covariance matrix.

Further, to evaluate the effectiveness of the proposed model, we
compare the new models with following benchmark models as
baseline:

Recently Viewed Items (RVI). recommends items that a user
has viewed in the history, ranked by viewed item’s recency. Al-
though this technique is not a collaborative filtering based method,
it is widely used as a personalized recommendation module in pro-
duction systems, and has demonstrated competitive performance.
In the work by Song et al. [25], a similar approach (Prev-day Click)
was adopted for temporal news recommendation, and outperformed
all MF-based methods in their experiment.

Item-to-ItemCollaborative Filtering (Item-CF). uses an item
as a seed, and rank recommended items by their co-occurrence
probability. In our use case, where seed is a sequence of items, we
approximate its conditional probability as described in Eq. (3).

Implicit Matrix Factorization (IMF). [14] decomposes user-
item interaction matrix into user and item matrices. For each user,
items are ranked by the dot product between user vector and item

vector. We use the implementation by implicit package2. The model
is fit using history and future sequences in a training set, and history
sequences in validation and testing sets.

All mixture density network models use 256 as dhidden, and are
trained using Adam [16] to maximize the log-likelihood

L(θ ) =
1
K

K∑
k=1

∑Lk
i=t log(fp (s

k
i |S

k
<t ,θ )

Lk − t + 1

where K is the number of user sequences in the training set, and
Lk is the length of the k-th sequence.

In all RNN-based models, one-layer GRU with 256 hidden units
is used. We early-stop training based on F1@20 on the validation
set, and report metric on the test set using the best model according
to the validation performance.

For implicit matrix factorization, we perform grid search over
the number of factors on the validation set, and report the metric
using the best model on test set.

Item embeddings are trained using the continuous skip-gram
model from FastText package [7], with the item embedding dimen-
sion demb set to be 100 and window size to be 5. All sequences in
the training set are used for embedding learnings. After training,
each item vector is normalized by l2 norm.

5.2 Datasets
To demonstrate the model’s general utility, effectiveness and allow
for re-producibility without relying on our proprietary e-Commerce
data, we evaluate the proposed model on two publicly available
datasets.

MovieLens-20M. [10] is a classic explicit-feedback collabora-
tive filtering dataset for movie recommendation, in which (user,
movie, rating, timestamp) tuples are recorded.We transformMovieLens-
20M into an implicit-feedback dataset by only taking records having
ratings greater than 4 as positive observations. User behavior se-
quences are sorted by time, and those containing more than 15
implicit positive observations are included. Each last viewed 15
movies by each user are split into 10 and 5, as history and future
respectively. As the nature of this dataset, there is no duplicate
items in the user sequence. After preprocessing, 75,962 sequences
are kept. 80%, 10%, and 10% of sequences are randomly split into
training, validation, and test sets, respectively. A movie vocabulary
is built using the training set, containing 16,253 unique movies.

RecSys15. 3 is an implicit feedback dataset, containing click
and purchase events from an online e-commerce website. We only
work with the training file in the original dataset, and keep the click
events with timestamps. We filter sequences of length less than 15,
and use final 2 clicks as future, and the first 13 clicks as history. We
do not filter out duplicate items, and as a result the same item could
appear in both history and target parts. After preprocessing, we
are left with 168,202 sequences. 80%, 10%, and 10% of sequences are
randomly split into training, validation, and test sets, respectively.
An item vocabulary is built only using items in the training set,
leaving us with 32,117 unique items.

2https://github.com/benfred/implicit
3http://2015.recsyschallenge.com/
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(a) MovieLens-20M

(b) RecSys15 4

Figure 2: Precision, Recall, and nDCG with varying number of mixture components on (a) MovieLens-20M and (b) RecSys15.

5.3 Metric
Various metrics can be used to evaluate the performance of a recom-
mender system. In this paper, we concentrate on precision, recall,
and nDCG. Higher values indicate better performance under these
metrics.

We denote top-k recommended items by Rk = {r1, r2, ..., rk },
where the items are ranked by the recommendation system, and
target items by T = {t1, t2, ..., tn }.

Precision@k. calculates the fraction of top-k recommended
items which are overlapping with target items.

Precision@k =
|Rk ∩T |

k

Recall@k. calculates the fraction of target items which are
overlapping with top-k recommended items.

Recall@k =
|Rk ∩T |

|T |

nDCG@k. computes the quality of ranking, by comparing
the recommendation DCG with the optimal DCG [15]. In implicit
feedback datasets, relevance scores for items in the target set are
assigned to 1. DCG@k is calculated as

DCG@k =
|Rk |∑
i=1

I(ri ∈ T )

log2(i + 1)
.

The optimal DCG is calculated as

DCGoptimal =
|T |∑
i=1

1
log2(i + 1)

.

nDCG@k is calculated as

nDCG@k =
DCG@k

DCGoptimal
.

6 RESULT
Table 1 summarizes the results of our experiments, where different
architectures are sorted by the metric in each column. As Movie-
Lens has no duplicate items in a sequence, RVI is not used on that
dataset. From the result on MovieLens, we first observe that the
proposed RNN-ATT-RNN-4,8 model consistently outperformed the
other methods in all metrics by large margins. Second, we see that
CBoI-FF is the worst performing neural network model, regardless
of the number of components used. Compared with that, RNN-FF
model, using the same simultaneous generation but recurrent his-
tory representation, substantially improves the performance (e.g.
from 0.0283 to 0.0350 for Precision@10 using 4 components). Third,
comparing between the two baseline models, Item-CF outperforms
IMF by a good margin across all metrics.

On RecSys15, besides the similar trends we see from MovieLens,
there are several new observations. First, RVI outperforms all the
models except for the RNN-ATT-RNN-{2,4,8} on Precision@10 and
Recall@10. This result is in line with Song et al. [25]. They also
observed the competitive performance from using previous day’s
clicks on news recommendation. Secondly, IMF is the worst per-
forming model on this dataset. We conjecture that this is because
that IMF only recommends items a user has not interacted with,
while in clicking streams like RecSys15, items in the history are
likely to reappear in the future.

To better understand the effect of mixture components on var-
ious model architecture, we group by the number of component
used across various models and visualize the result in Fig. 2. We
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observe that RNN-ATT-RNN-n achieves most visible improvement
as the number n of mixture components increases. We also find out
that for all architectures with mixture density network, using two
mixtures always achieves better result compared with using one
mixture. However, unless the attention mechanism is used, we see
diminishing improvements with more components.

The experiments have revealed that it is clearly beneficial to
capture the multi-modal nature of user behavior in a recommender
system. This is however only possible with the right choice of user
representation and right mechanism for generating mixture param-
eters. In these experiments, our novel approach, the attention-based
recurrent history representation combined with the sequential gen-
eration, was found to be the best model on both datasets. We have
further concluded that the user preference is not static across time,
and it is beneficial to model the user history as a sequence rather
than a set.

In recent years, deep learning technique has been intensively
adopted in building the recommendation system, such as Ni et al.
[23], Zhou et al. [30] and Zhou et al. [29]. It will be interesting to see
and compare the mixture density network method to these models
under various use cases. This will be an interesting exploration area
in future research.

7 CONCLUSION & FUTUREWORK
In this paper, we proposed a general and effective model to con-
struct a recommender system by generating the joint probability
density function for future item vectors. The proposed model com-
bines recurrent user history representation with a mixture density
network, where a novel attention-based recurrent mixture density
has been proposed to output each mixture component sequentially.
Experiments on two publicly available datasets, MovieLens-20M
and RecSys 15, have demonstrated significant improvement in re-
call, precision, and nDCG compared to various strong baselines.
Our proposed model shows big advantage of modelling the multi-
modal nature of the predictive distribution in any recommendation
system.

In this work, we start an exploration of the new modeling frame-
work. There are several areas in which more research needs to be
done to improve the overall performance. First, to better under-
stand our model, thorough analysis on the learned mixture com-
ponents and the attention weights can be conducted. Second, we
propose using pre-trained embeddings using word2vec, which leads
to embeddings that learn the distributional, user-behavior based
properties of items. One way to extend our model is to incorporate
content-based attributes into the item embeddings we use, and
create a hybrid recommender system. Last, we have found our mod-
els was effective in our e-Commerce domain applications, and in
this paper analyzed experimental results on two publicly available
datasets. An widely exploration and use of the proposed method
for online advertising (such as ads targeting), personalized search,
shared economics (hotel, ride recommendation), etc. would be very
interesting topics, and undoubtedly a potentially very rewarding
exercise.

4Implicit Matrix Factorization resulted in the score of 0.0176, 0.0878, and 0.0402 re-
spectively for precision@10, recall@10, and nDCG@10, and is not shown in here
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danpur. 2010. Recurrent neural network based language model.. In Interspeech,
Vol. 2. 3.

[23] Yabo Ni, Dan Ou, Shichen Liu, Xiang Li, Wenwu Ou, Anxiang Zeng, and Luo
Si. 2018. Perceive Your Users in Depth: Learning Universal User Representa-
tions from Multiple E-commerce Tasks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &#38; Data Mining (KDD ’18).

[24] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[25] Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. 2016. Multi-rate deep
learning for temporal recommendation. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
909–912.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[27] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems. ACM, 17–22.

[28] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 495–503.

[29] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen,
and Jun Gao. 2018. ATRank: An Attention-Based User Behavior Modeling Frame-
work for Recommendation. (2018).

[30] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery &#38; Data Mining (KDD ’18).


	Abstract
	1 Introduction
	2 Item Recommendation
	2.1 Recommendation Framework
	2.2 Classic Count-based Approach

	3 Attention-based Mixture Density Recurrent Networks
	3.1 Item Representation
	3.2 Historical Interaction Representation
	3.3 Mixture Density Network

	4 Related Work
	4.1 A History-based Recommender System with a Recurrent Neural Network
	4.2 Continuous Item Representation

	5 Experimental Settings
	5.1 Models
	5.2 Datasets
	5.3 Metric

	6 Result
	7 Conclusion & Future Work
	Acknowledgments
	References

