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ABSTRACT
Recently, click-through rate (CTR) prediction models have evolved
from shallow methods to deep neural networks. Most deep CTR
models follow an Embedding&MLP paradigm, that is, first map-
ping discrete id features, e.g. user visited items, into low dimen-
sional vectors with an embedding module, then learn a multi-layer
perception (MLP) to fit the target. In this way, embedding mod-
ule performs as the representative learning and plays a key role
in the model performance. However, in many real-world applica-
tions, deep CTR model often suffers from poor generalization per-
formance, which is mostly due to the learning of embedding pa-
rameters. In this paper, we model user behavior using an interest
delay model, study carefully the embedding mechanism, and ob-
tain two important results: (i) We theoretically prove that small
aggregation radius of embedding vectors of itemswhich belongs to
a same user interest domain will result in good generalization per-
formance of deep CTR model. (ii) Following our theoretical analy-
sis, we design a new embedding structure named res-embedding.
In res-embedding module, embedding vector of each item is the
sum of two components: (i) a central embedding vector calculated
from an item-based interest graph (ii) a residual embedding vec-
tor with its scale to be relatively small. Empirical evaluation on
several public datasets demonstrates the effectiveness of the pro-
posed res-embedding structure, which brings significant improve-
ment on the model performance.

1 INTRODUCTION
In recommender systems, CTR (click-through rate) prediction is a
crucial task, which has attracted a lot of attention and become the
cornerstone. The aim of CTR model is to predict the probability of
one user click a given candidate item, which will decide the final
ranking of items presented to users.

Thanks to the rapid development of deep learning technology[14],
deep neural network based models for CTR prediction task have
gained significant progress and become state-of-the-art methods.
Most deep CTR models follow a Embedding&MLP paradigm, as
illustrated in Fig.1: (i) Embedding module which maps discrete
id features, e.g., user historical clicked items, into low dimensional
vectors and then transformed into a fixed-length vector by pooling.
(ii) MLP module which aims to learn the nonlinear relationship
among features and fit the target by a fully connected network,
a.k.a. multi-layer perception.

Many approaches have been proposed to improve the perfor-
mance of deep CTR model, such as PNN[16], DeepFM[9], DIN[26]
and DIEN[25]. However, most work focus on designing new net-
work architectures to substitute MLPmodule, aiming to better cap-
ture the nonlinear relationship among features, while little effort
has beenmade to improve the basic yet important embeddingmod-
ule. In this paper, we study carefully the embedding mechanism
theoretically and try to fill the gap in practical.

Figure 1: The illustration of the Embedding&MLP structure.

Generally speaking, traditional embedding module works in a
look-up table manner, that is, each discrete feature corresponds
to a low dimensional vector, with parameters learned from train-
ing data of CTR task. Note that parameters of both embedding
module and MLP module are learned end-to-end. In this way, em-
bedding module actually performs as a representative mapping
and determines the input distribution of the subsequent MLP mod-
ule. Referring to the data-dependent generalization theory[12], in-
put distribution will influence the generalization performance of
model. Therefore, embedding module is vital for the generaliza-
tion performance of deep CTR model. As [26] reported, in prac-
tice, overfitting phenomenon commonly exists during training of
deep CTR model, especially in industrial applications with large
scale discrete features. We argue that it is the embedding module
that might cause the poor generalization performance. The reason
lies in two-folds: (i) In many real systems, number of features can
scale up to billions, causing the number of embedding parameters
to be huge. This would promote the memory ability but decrease
the generalization ability. (ii) With the supervision of click labels
only, it might be hard for the traditional embedding module to
learn a representative mapping with high generalization ability.
For example, distance of embedding vectors of two similar items
might change greatly with different initializations in the end-to-
end training manner.

Motivated by the above observation, in this paper, we propose
to (i) quantitatively analyze which variables are involved in the
generalization error bound of deep CTRmodels, and (ii) design cor-
responding solutions to enhance generalization ability according
to this quantitative relationship.

We take the recommender system in e-commerce industry as
an example. In e-commerce scenarios, we shall first model users’
behavior with an “interest-delay” model. According to experience,
we suppose that user’s interests will last for a while and users’ click



behaviors are generally affected by their interests. Different inter-
ests will drive users to click different types of items. Hence, assume
that each item has its own interest domain. E.g., item ”iphone 6”
might belong to the interest domain of ”smartphone”. Intuitively,
items belonging to the same interest domain should be similar
and distances between their embedding vectors should be small.
In fact, we do have proved this mathematically. Specifically, we
prove that the generalization error of deep CTR model is
bounded by the envelope radius of itemswith the same inter-
est domain in the embedding space. Moreover, following this
theoretical analysis, we design a new residual embedding structure
which is theoretically helpful for improving the generalization abil-
ity named as res-embedding. In this structure, embedding vector
of each item is the sum of a central embedding vector and
an independent low-scale residual embedding vector. Items
in the same interest domain have similar central embedding vec-
tors. To achieve this goal, we build an item-based interest graph
based on the co-occurrence frequency of items in user historical be-
havior sequences. Central embedding vector of each item is calcu-
lated as the linear combination of the central embedding basis vec-
tors of its neighboring items in the interest graph, with the linear
combination coefficients calculated by three practical implementa-
tions including average, GCN (Graph Convolutional Network)[13]
and attention. Besides, the residual embedding vector is forced to
be small-scale, by penalizing the l2-norm of parameters of resid-
ual embedding vectors on the final objective function of deep CTR
model.

Contributions of this paper are summarized as follows:
• We theoretically proved that increasing the aggregation de-

gree of embedding vectors of items in the same interest do-
main helps decrease the generalization error bound. This
may be a direction worth studying for the future to improve
the generalization performance of embeddings.
• Following the theoretical analysis, we propose a new res-

embedding structure as well as three practical implemen-
tations including average, GCN and attention. In addition,
We alsomathematically prove the consistency of theory and
method.
• We conduct careful experiments on several public datasets.

Adding with res-embedding structure, state-of-the-art deep
CTR models all gains significant improvement on the AUC
metric. This clearly verifies the proposed theory as well as
res-embedding method.

The rest of the paper is organized as follows.The related work is
summarized in section 2. Section 3 theoretically analyzes the influ-
ence of the distribution of embedding vectors on the generalization
performance of deep CTR prediction model.Then we propose the
detail of the res-embedding and explain its consistency with the-
oretical analysis in section 4. Our experimental results are shown
in section 5 and conclusion is shown in section 6.
2 RELATEDWORK
Deep CTRmodel: Recently, the deep learning has beenwidely used
in the CTR prediction task. In the very first, NNLM [3] learns the
representation of each word, which has inspired many natural lan-
guagemodels andCTR predictionmodels that need to handle large-
scale sparse input features. Piece-wise Linear Models (LS-PLM) [7]
and factorization machine (FM) [17] adopt the embedding layer
for the sparse input feature and capture the relationship amongs
the different features through the specific form functions, which
can be regard as a single-layer neural network. Based on these

model, many deeper models like Deep Crossing [19], Wide&Deep
Learning [4] and YouTube Recommendation CTR model [5] em-
ploy more complex MLP. PNN[16] tries to capture high-order fea-
ture interactions by involving a product layer after embedding layer.
Therefore, there are also some works[26] that extract advanced
information with more abstract features. Though improvements
based on deep model continuously enhance the performance of
CTR prediction tasks, their inputs are mostly from the original em-
bedding layer. We design embedding layer to promote the gener-
alization performance based on these networks.

Embedding learning: Traditional methods calculate embedding
vector by the relationship between high dimensional data. Some
embedding algorithm like Laplacian Eigenmaps [2] and LLE (Lo-
cally Linear Embedding) Graph Factorization [18], LINE [20] keep
stronger related nodes closer to each other in the vector space.
Some deep methods like GCN [13] define a convolution operator
on graph to learn the embedding based on the graph. The model
iteratively aggregates the embeddings of neighbors for a node and
uses them to obtain the new embedding. Individual literature [15]
uses an additional network and context information of the data to
pre-train embedding vectors to predict the CTR model.

Generalization: [23] proposes a theoretical framework to define
the robustness of learning algorithm and proves that generaliza-
tion performance of the learning algorithm is determined by the
robustness of a learning algorithm. It provides the robustness of
some common learning algorithms like SVM, DNN and so on. This
theoretical framework and example based on DNN help us to theo-
retically analyze the influence of distribution of embedding vectors
on the generalization of deep CTR model. [24] utilizes this frame-
work to study the relationship of metric structure of the features
and robustness of the algorithm and proposes structured metric
learning method. Other similar work [21][22] discuss the structure
of the embedding should be tide. Compared with these work, our
paper study more complex structure of embedding vectors. With
modeling based on the interest state, we prove that embeddings
under a kind of group aggregated structure could promote the gen-
eralization of the deep model.

3 THEORETICAL ANALYSIS
In this section, we shall first model the user’s click behavior above
the user’s interest called interest delay model. For ease of expres-
sion, we divide interest into several categories, called interest do-
mains.Then, the mathematical discussion of generalization of CTR
model is based on the interest delay model. According to some gen-
eralization theory, we finally come to the conclusion that the gen-
eralized error bound can be effectively reduced by reducing the
envelope radius of the items belonging to the same interest do-
main in the embedding space without greatly changing the total
envelope radius of all items in the embedding space. Based on this
conclusion, we propose a basic prototype of res-embedding and its
final improved version.

3.1 Notation
Theexpressions and variables in Table⁇ are some important math-
ematical symbols in this section. The specific definition and de-
tailed introduction are shown as follows.

Embedding Space: In this section, all of the items have their
own representation vectors in the d-dimensional embedding space
Rd ; We mainly analyze the influence of the distribution of items
in this embedding space on CTR model. For simplicity, item with

2



Expression Meaning
d The dimension of embeding space
{x1, · · · ,xM }h The user’s click behavior sequence

with length
xt The target item
y∗ Ground-truth label
f (·, ·) Deep CTR model
z Interest hidden state
Nz Number of the Interest hidden state
P(x |z) Conditional distribution of item x un-

der the Interest hidden state x
P(x), P(z) The marginal distribution of item x

and prior distribution of interest hid-
den state z

T ,p Number of the preriods and the time
step

N The number of the training samples
l(f , s) Loss function of the sample s based on

the model f
Es (l(f , s)) Expected loss∑N
i=1 l(f , si ))/N Empirical loss

φ(V ) Envelope radius of the set V
Table 1: The notations of some main Expressions and their
meanings.

embedding vector is referred to as item itself in this section (e.g.
”item x” means item with embedding vector x .)

Data and model: In CTR prediction task, one sample s is com-
pose of the input features and label.That is s = {{{x1, · · · ,xM }h ,xt },y∗}.
The input features of one sample are composed of user’s behavior
sequence, i.e. the clicked item sequence {x1, · · · ,xM }h , (x i ∈ Rd
means item clicked in i-th time step, M is the total number of
time steps) and the target item xt ∈ Rd . The label of the sample
y∗ ∈ {0, 1} indicates whether the user clicked on the target item.
The CTR prediction model f (·, ·) : (RM×d ,Rd )→ [0, 1] is learned
by fitting training samples. In this paper, we shall discuss the pa-
per around the D layers MLP with ReLU nonlinear function which
is defined in Definition 1

Definition 1. D layers MLP with ReLU nonlinear function and
n×d input dimensions is defined as follows.The input is concatenation
of {x1, · · · ,xn } and xi ∈ Rd for ∀i , and the label is y∗ ∈ Y(Y =
{0, 1}). The trainable parameters are {Wt ,bt } for ∀t = 1, · · · ,D. Its
forward process is

h0 = [x1, · · · ,xn ],
ht = ReLU (Wth

t−1 + bt ),

f (x1,x2, · · · ,xn) = siдmoid(WDh
D−1 + bD ).

(1)

ReLU (x) =max(x , 0) and the siдmoid(x) is the sigmoid function.

Generalization error bound: Generalization error bound of
model f is the upper bound of the absolute value of the difference
between expected lossEs (l(f , s)) and empirical loss

∑N
i=1 l(f , si )/N .

l(f , s) is the loss function of the ground-truth label of s and the out-
put of f when the input is the feature of s . Empirical loss is the ex-
pectation of loss based on distribution of sample s ,i.e Es (l(f , s)) =

∫
s l(f , s)p(s), and experience loss is the average loss of all training
samples si , i ∈ {1, · · · ,N }. N is the number of training samples.

Envelope radius: For a set V ⊂ Rd , if ∃w ∈ Rd s.t. ∀s ∈ V ,
∥w − s ∥2 ≤ R0, then envelope radius of set V is no more than R0,
which is defined as φ(V ) ≤ R0.

3.2 User Behavior Modeling: Interest Delay
Model

P (x) = P (x|z = 1)P (z = 1) + P (x|z = 2)P (z = 2)

items sampled from 
P (x|z = 1) P (x|z = 2)

items sampled from 
P (x)

items sampled from 

x

T
1

z1 zp
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Figure 2: The upper part of this figure is the case of Nz = 2.
The distribution of item embedding P(x) is composed of con-
ditional distribution P(x |z = 1) and P(x |z = 2). The two
dashed circle is the envelope circle of the domainP(x |z) , 0.
The lower part of this figure is the sampling process of be-
havior sequence and target itemof one sample.The behavior
sequence is generated from the hidden state of p time peri-
ods from z1 to zp . One hidden state controls T time steps.

Intuitively, when browsing products in a E-commerce website,
users will click different products due to different interest. Based
on experience and intuitive common sense, we assume that the
user’s interest will last for a period of time when browsing the
internet. Each click is defined as one “time step” and the sequence
of the time steps with the same interest is one ”period”. This model
is so called ”interest delay” model.

Focusing on a single time step, the user’s single click behav-
ior is determined by the user’s current interests. We mathemati-
cally illustrate this behavior as the sampling process as follows.
Assume that there are Nz interest domains, and interest hidden
state z ∈ {1, 2, · · · ,Nz } is defined as a quantitative discrete vari-
able of interest domain. The probability distribution function P(x)
of one user click item x is related to his interest hidden state z as
P(x |z). The distribution of items in embedding space consists of
conditional distribution P(x) =

∑
z P(x |z)P(z), where P(z) is the

prior probability distribution of z. As shown in upper part of Fig-
ure 2, the total distribution of the clicked item P(x) can be regarded
as a combination of two conditional distributions P(x |z = 1) and
P(x |z = 2). By the way, we define the domain of P(x |z) is the area
that P(x0 |z = i) , 0.
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A click behavior sequence of user in interest delay model is gen-
erated from two phases: Firstly, a user determine an interest hid-
den state zi in each period(Totallyp periods) withT time steps, and
then sample (randomly click) a item xtpi with the influence of in-
terest hidden state zi . Thus, user’s clicked items sequence could be
written as {{x1p1 ,x

2
p1 , · · · ,x

T
p1 }, {x

T+1
p2 , · · · ,x2Tp2 } , · · · , {· · · ,x

T×p
pp }}h

(pi means the i-th period,M = T ×p). The sampling process of be-
havior sequence is shown in lower part of Figure 2. Assumption 1
summarizes the quantitative sampling process of user behavior in
the interest delay model.

Assumption 1. Training sample
s = ({{x1p1 , · · · ,x

T
p1 }, {x

T+1
p2 , · · · ,xT×2p2 }, · · · , {x

T×(p−1)+1
pp , · · · ,

x
T×p
pp }}h ,xt ,y

∗) consists of clicked items {x1, · · · ,xT×p }h in p peri-
ods withT time steps, target item xt and labely∗. The interest hidden
state of target item zt is sampled from Pt (z), and target item xt are
sampled from the conditional distribution P(x |z). For user’s click be-
havior, interest hidden state sequence of p periods z̃ = {z1, · · · , zp }
is sampled from a set S̃z ⊂

∪p
1{1, · · · ,Nz }. Each element of z̃ con-

trols the user’s click behavior in T time steps. That is, each item of
historical click behaviors subsequence {xT×(i−1)+1, · · · ,xT×i }h is
sampled from the conditional distribution P(x |zi ). zi is interest hid-
den state in the i-th period. The number of elements in set S̃z is NS .
The label y∗ is sampled from {0, 1}.

The sampling process of behavior sequence is shown in Figure
2. It assumes that one interest hidden state can control a T time
steps peroid, which is consistent with the actual situation for the
user’s interest always lasts for a while in the e-commerce scenario.
Interest hidden of click behavior is a sequence z̃ ofp periods, which
is sample from a set S̃z . Therefore, the final length of click behavior
sequence length should be T × p.

3.3 Analysis of Generalization Error Bound on
Interest Delay Model

Section 3.2 models user behavior quantitatively through the in-
terest delay model. In this subsection we will discuss generaliza-
tion error of the DNNs on the data generated by the interest delay
model. Which variable is related to generalization error? Theorem
1 will give a generalization error bound of the MLP with ReLU in
definition 1 on the data sampled as the setting of Assumption 1.

Theorem 1. Thedata sample represented as s = {{x1, · · · ,xT×p }h ,xt ,y∗}
is generated from the way of Assumption 1. For the D layers MLP
with ReLU and (Tp + 1) × d input dimensions defined in Defini-
tion 1, f ({x1, · · · ,xT×p }h ,xt ), the loss function of MLP is f (l , s) =
| f ({x1, · · · ,xT×p }h , ,xt )−y∗ |. If there areN samples sampled from
the way of Assumption 1 to train the MLP, with the probability 1−δ ,
the generalization error bound satisfies

|Es (l(f , s)) −
1

N

N∑
i=1

l(f , si ) | ≤ inf
r
{
√
Tp + 1∥W ∥D2 r

+ lM

√
4NzNS (2Rmax

√
d/r )d(Tp+1)ln2 + 2ln(1/δ )

N
}

(2)

Among them, r is a parameter and will disappear in the infimum
operation. ∥W ∥2 is the average of 2-norm of all parameter matri-
ces in MLP. That is ∥W ∥2 =

∑D
i=1 ∥Wi ∥2/D. lM is the maximum

value of l(f , s), and lM = 1 in Definition 1. Nz is the number of the

interest domains and NS is the number of the interest sequence set.
Rmax = maxi φ(domainPi ) for all i = 1, · · · ,Nz . d is dimension of
embedding vector.

As long as the structrue of model and the training data are fixed,
D,d ,p,T ,N ,Nz andNS are fixed too. According toTheorem 1, gen-
eralization error will only be affected by the ∥W ∥2 and Rmax .
We will not discuss ∥W ∥2 here for ∥W ∥2 is affected by too many
factors that it is difficult to analyze the relationship between ∥W ∥2
and embedding layer. Reducing the whole scale of the embedding
vectors seems to corroborate the effectiveness of applying a regu-
larization term of embedding layer in some cases. However, it will
also reduce the capacity and representation ability of embeddings.
By individually reducing the radius of envelope circles of each in-
terest domain, one could make the items with the same inter-
est domain closer in embedding space but maintain the dis-
tances among the items of different interest domains, which
can control the generalization error bound and maintain capacity
and representation ability of CTR prediction model at the same
time.

The proof of theTheorem 1 and the details of specific derivation
process is in the supplementary material.

3.4 Prototype and discussion
Based on the theoretical analysis, we firstly propose and concen-
trate on a basic prototype. In this prototype, items in the same
interest domain shared the same central embedding vectors and
each item has its unique residual embedding vector with smaller
scale. The final embedding vector of one item is the sum of its cen-
tral and residual embedding vectors. By reducing the scale of the
residual embedding, we can effectively reduce the distance of the
items of the same interest domain in embedding space, which will
reduce Rmax in (2).

Assume there are I interest domains andH items totally. We de-
fine central embedding matrix as C ∈ RI×d . Each row of C is the
central embedding vector of each interest domain. P ∈ RH×I is
the relationship matrix between items and interest domains. Each
row of P is one-hot vector. If i-th item belongs to j-th interest do-
main, the element P(i, j) = 1 otherwise 0. R ∈ RH×d is residual
embedding matrix. Each row of R is the residual embedding vector
of each item. The final embedding matrix E ∈ RH×d , and each row
of E is the final embedding vector of each item. E is calculated as

E = PC + R. (3)
For instance, in Figure 3, 8 embedding vectors are replaced into 2

central embedding vectors and 8 residual embedding vectors. With
this structure, the envelope radius of embedding vectors in the
same interest domain is bounded by the scale of residual embed-
ding vectors.

However, the relationship matrix P is unknown and hard to ob-
tain. In another word, it is unknown that which interest domain
each item belongs to. Wrong P may bring worse generalization to
deep CTR prediction model. It is necessary to ascertain the reason-
able relationship between items and interest domain. Moreover,
It is very likely that a item does not belong to only one interest
domain. That is, the constraint relationship of central embedding
could be soft, which means the central embeddings of items in the
same interest domain may not be exactly the same, but just more
similar.

In order to solve this problem, we reexamine Assumption 1 and
notice that one hidden interest state z will keep T time steps to
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Figure 3: Sketch Map of the basic res-embedding prototype
with 8 items and 2 interest domains (H = 8 and I = 2) in the
3-d embedding space.

affect user click behavior. Therefore, a conclusion that two items
are more likely to be in the same interest domain if they appear
more frequently in a short-term of user click behaviors can be de-
duce. From this conclusion, we define an item interest graphZ con-
structed by co-occurrence frequency of each item pair to describe
similarity relation of interest domain among items.

4 METHOD
In the Section 3, there is a conclusion that the reducing the dis-
tance of items with the same interest domain in the embedding
space is helpful to promote the generalization of CTR prediction
model. However, as our discussion in sub-section 3.4, in the
real scenario, the original prototype proposed in Section 3 has the
problem that it is impossible to determine which interest domain
each item belongs to for the detail information of interest domain
of the is unknown. In this section, based on the theoretical anal-
ysis and the prototype, we construct an interest graph describing
the similarity of interest domains between items, and propose a
improved res-embedding base on the interest graph. As the evolu-
tionary version of the proposed prototype, res-embedding contain
central embedding part and residual embedding part. In central em-
bedding part, Central embedding vector of each item is calculated
through its adjacent items in the interest graph. In residual embed-
ding part, each item owns an independent embedding vector.

4.1 Res-embedding
We still assume that there areH items totally. Res-embedding struc-
ture is parameterized by two trainable parameter matrices, central
embedding basis matrix Cb ∈ RH×d and the residual embedding
matrix R ∈ RH×d . Each row vector ofCb is central embedding ba-
sis vector of corresponding item and Each row vector of R is resid-
ual embedding vector of corresponding item. The final embedding
vector of one item is the sum of its central embedding vector and its
residual embedding vector. The residual embedding vector of one
item can directly read from R and central embedding vector of one
item is derived from the linear combination of other items’ central
embedding basis vectors. We define the residual embedding ma-
trixW ∈ RH×H and the i-th row vector inW represents the linear
combination coefficients of i-item about all items central embed-
ding bases. The calculation process of final embedding matrix E is
shown as follows

E =WCb + R. (4)
Each row vector of E is the embedding vector of corresponding
item finally entered into the MLP.

According to the theoretical analysis, a reasonable linear combi-
nation matrixW should make the central embedding of the items

Algorithm 1 Graph construction
Input: user click behavior sequences set B = {b1, · · · ,bn },

window radius ∆
Output: Adjacent matrix Z

1: Initialize the all element of adjacent matrix Z as 0.
2: for i in 1 · · ·N do
3: bi = {дi1, . . . ,д

i
mi
}

4: for дic in {дi1, . . . ,д
i
mi
} do

5: Nl =max(1, c −∆)
6: Nr =min(c +∆,mi )
7: for дw in {дiNl

,дiNl+1
, . . . ,дiNr

}\дc do
8: Z(дc ,дw )← Z(дc ,дw ) + 1

9: Keeping the largest K values in each row of Z , and set the rest
to 0

10: return Z

with the same interest domain closer. In order to calculate a rea-
sonable linear combination matrixW , we utilize the information
of item interest graph mentioned above. The central embedding
of item should be a linear combination of the center embedding
basis of items connected with it in the item interest graph. We con-
struct a item interest graph with its adjacent matrix Z ∈ RH×H
based on the co-occurrence frequency of items on historical click
behavior sequence of all users according to the inference of As-
sumption 1. The construction process of the graph is illustrated
in Algorithm 1. In Algorithm 1, the B = {b1, · · · ,bN } is the set
of user click behavior sequences of all N training samples, and
bi = {дi1, . . . ,д

i
mi
} is the user click behavior sequence of i-th sam-

ple withmi clicked items arranged in time sequence. дij means the
ID of j-th clicked item in bi . Item ID is the index of the adjacent
matrix, {1, 2, · · · ,H }.

The linear combination matrixW is decuded from adjacent ma-
trix Z of item interest graph.

W = д(Z) (5)

function д() : RN×N → RN×N converts the adjcent matrix to a
linear combination matrix with the same size.

The final central embedding of one item is composed of linear
combination of the central embedding basis of its adjacent items
in the interest graph Z . The linear combination coefficients w are
determined by the connection weight of the graph.

For instance, to get the embedding vector of item i , the adja-
cent items list {i1, i2, i3, i4}is retrieved from the graph in Figure
4. We select the central embedding basis of items {i1, i2, i3, i4} as
the basis of the final central embedding of item i . The final central
embedding vector of item i is weighted average by the weightw1,
w2,w3,w4. The weightsw1,w2,w3,w4 are obtained based on the
connection weight f1, f2, f3, and f4 in the graph. Finally, the final
embedding vector of item i is derived as the sum of its final central
embedding vector and residual embedding vector.

We adopt three different forms of function д to fetch the linear
combination coefficients matrixW . The simplest one is the aver-
age function which means that all of the linear combination coef-
ficients is the same:

дAVG (Z) = avgnz(I(Z > 0)). (6)
The indicator function I(Z > 0) means that each element of the F
is changed to 1 if it is greater than 0, otherwise changed to 0. The
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Figure 4: The left part of this figure is the items graph
(Weighted undirected graph) constructed based on users’
click behaviors. The weight between the each item in the
graph are the co-occurrence frequency in a short-term pe-
riod of users’ click behaviors. When querying the embed-
ding vector of item i, we queries the adjacent items i1, i2, i3
and i4 and the connection weights f1, f2, f3 and f4. We com-
bine the central embedding basis vectors of these adjacent
in weight w1, w2, w3 and w4 as the final central embedding
vector linearly. Weights varies based on different function
д(). Finally, the central embedding vector is added by resid-
ual embedding vector of i-th item.

avgnz operation averages all the non-zero elements of every row
vector in the matrix, and the 0 elements remain unchanged.

The second form of function borrows the idea from GCNs. Row
normalization and column normalization are performed on adja-
cent matrix, and the linear combination weight is the connection
weight. That is

дGCN (Z) = D−
1
2ZD−

1
2 . (7)

The degree matrix D ∈ RN×N is calculated by row sum of adja-
cency matrix Z .

Last form of function is the attention method. We need to intro-
duce Cb to calculate the attention score as the linear combination
weights, so the дATT () is rewritten as дATT (Z ,Cb )

The дATT (Z ,Cb )(i, j) means the i-th row and j-th column ele-
ment of output of дATT (Z ,Cb ). · represents the inner product of
two vectors.Cb (i, :) repesents the i-th row vector of matrixCb .

дATT (Z ,Cb )(i, j) =
exp (Cb (i, :) ·Cb (j, :))∑

k ∈{k |Z (i,k)>0} exp (Cb (i, :) ·Cb (k, :))
,

(i, j) ∈ {(i, j)|Z(i, j) > 0}
(8)

Beyond averaging, GCNs and attention methods pay more at-
tention on the importance of each adjacent item. Therefore, their
performance is supposed to be better, which are reflected in the
experiments.

Our optimization objective function is

min
Θ,Cb ,R

E0(Θ,Cb ,R) + λL(R). (9)

Θ is the parameter set of the deep CTR prediction model except
for the embedding layer. E0(Θ,Cb ,R) is the cross-entropy loss of
CTR, and the l2 regularization term L(R) with the coefficient λ is
added to bound the scale of residual embedding vectors. Proposi-
tion 1 in the appendix and related analysis will illustrate that the
proposed res-embedding can reduce the distance among the goods
belonging to the same interest domain in the embedding space and
the goods, while maintaining the distance between the goods in
different interest domains.

5 EXPERIMENTS
In this section, we perform a series of experiments around res-
embedding. The generalization experiments verify the theoretical
conclusion through training set decrement experiment and visual-
ization experiments. Experiments onAmazon andMovielens datasets
illustrate that the proposed embedding layers could enhance the
performance of various deep CTR prediction models.
5.1 Datasets and Experimental Setup

Datasets Users Items Categories Clicks
Amazon-Electronics 192,403 63,001 801 1,689,188

Amazon-Books 603,669 367,984 1,602 8,898,041
MovieLens 138,493 27,278 21 20,000,263

Table 2: Statistical information of datasets in this paper.
”Clicks” means click number of the dataset, and for Movie-
lens dataset, it means the number of the ratings.

Amazon Datasets[11]: We utilize the product reviews and meta-
data fromAmazon to validate performance of res-embedding. Elec-
tronics and Books subsets are used by our experiments. The statis-
tical information of Electronics and Books is shown in Table 2.The
complete user behaviors are (д1, . . . ,дN ). Our model is to predict
the probability of one item reviewed in the n+1-th step under the
firstn reviewed item. For each user, there is a pair sharing the same
historical behavior (b1, . . . ,bn)with one positive and one negative
sample. The target item of the positive sample is bn+1 and that of
the negative sample is randomly sampled from all of the sample.
Training and Testing datasets are divided by users.

MovieLens Datasets[10]:The statistical information of Electron-
ics and Books is shown in Table 2. We choose the movie that users
rate at a certain time as the target movie mt and n = 50 movies
(m1, ...,mn) with a score of no less than 3 before this time as the
user behavior sequence. Targetmovie ratedmore than 3 are labeled
as positive, otherwise negative.{(m1, · · · ,mn),mt ,y} is a CTR pre-
diction sample.

For all models and datasets, we use Adam as the optimizer with
exponential decay, in which learning rate is set as 0.1 and batch-
size is set as 128. The regularization coefficient λ of the residual
embedding vectors in res-embedding structure is set as 0.006. We
select the windows redius ∆ = 2 and the K = 8 mentioned in
Algorithm 1.

AUC[6] is adopted as criteria which measures the goodness of
order by ranking all the sampleswith predicted CTR.We utilize res-
embedding on several different deep models to validate the perfor-
mance of res-embedding. These deep models are listed as follows:

Basic MLP: The basic MLP is the original MLP. It receive the
embedding vector of target item and the sum of embedding vec-
tors of the items clicked by users historically as the input. In this
experiments, layers of MLP are set as 36×400×120×2.

PNN[16]: PNN is an variant of the basic MLP, and the difference
between them is that the PNN receives the product the sum embed-
ding vectors and target product as the an extra input vector. The
layers of PNN are set as 54×400×120×2.

DIN[4]: DIN introduces the attention mechanism into the CTR
model. It extracts several interest vectors of the users from their
historical behaviors. The embedding vector of the target item is
extracted into an interest vector and adopt the attention operation
with the interest vector of the behavior sequence, then input the
result to the basic MLP.
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5.2 Validation of Theorem 1
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Figure 5: Compare the original embedding and the res-
embedding with attention in DIN model for electronics
dataset, The horizontal axis is the number of training
steps/100, and the longitudinal axis is the loss function of
the CTR model. The lines of different colors represent the
loss function curves of different models under different
data. For example, ”Base Train” represents the line of the
original embedding structure under the training dataset.

We compare the train-test line of the original embedding layer
and that of the res-embedding with attention in DIN model for
electronics dataset. As shown in Figure 5, under the original em-
bedding structure, the CTR task has a very strong over fitting phe-
nomenon. That is, as the number of training steps increases, the
gap between training and test loss group quite quickly. When the
res-embedding is adopt as the input of model, this error has been
greatly reduced, which indicates that the generalization error bound
of CTR prediction model is effectively controled by res-embedding
structure.

Aiming to verify the generalization performance promotion of
res-embedding further, we compared original embedding structure
with res-embedding in DIN model under the decay datasets. We
reduce scale of the training set of Books dataset and utilize them to
train the deep CTRmodel and the proportion of training dataset to
whole training dataset decays from 90% to 10%. In Figure 6, we find
that only adapting 20% or 30% dataset to train with res-embedding
could obtain the similar performance to using the whole training
set. This phenomenon demonstrates that res-embedding structure
can partly relieve the problem of generalization performance loss
due to insufficient training data.

Theorem 1 tells us that the group aggregating embedding vec-
tors are helpful to improve generalization performance. In order
to prove the consistency between res-embedding and theoretical
analysis, we visualize embedding vectors of the top 1000 highest
frequency items in the deep CTR model with t-sne visualization
methods. Figure 7(a) shows visualized embedding vectors of orig-
inal embedding structure. It can be seen that embedding vectors
are randomly located in the whole region. While in Figure 7(b),
7(d), and 7(c), the density of embedding distribution is not uniform,
which is different from the original embedding structure. Embed-
ding vectors in some parts are dense and in other parts are sparse.

Figure 6:The proportion of to whole training set varies from
10% to 90%. ORI, AVG, GCN, ATT represent the original em-
bedding, res-embedding with average, GCN, and attention
fusion mechanism.

(a) ORI (b) AVG

(c) ATT (d) GCN

Figure 7: The blue dots denote embedding vectors of the top
1000 high frequency items. ORI represents the original em-
bedding structure, AVG, ATT and GCN are res-embedding
with three different fusion mechanisms.

In another word, embedding vectors are more aggregated locally,
which is consistent with our theory.
5.3 Total Promotion of Res-embedding
Table 3 shows the experimental results on two Amazon Datasets
andMovieLens Datasets. All the results contain themeanAUC and
its variance under experiments repeated for 5 times. Comparing
with the original embedding structure with L2-regularization term
and without it, we find that the performance has been improved af-
ter adding regularization terms, but the promotion is not so large.
As mentioned in the theoretical analysis, it is because reducing
the scale of embedding as a whole limits the expressive power
of embedding while reducing Rmax . Res-embedding structure pro-
motes the AUC of the deep model under the CTR task. Compared
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Methods AUC(Electronics) AUC(Books) AUC(Movielens)

MLP 0.8558±0.0004 0.8833±0.0013 0.7242±0.0002
MLP+R 0.8649±0.0008 0.8802±0.0021 0.7337±0.0003

MLP+Skip 0.8710±0.0006 0.8964±0.0013 0.7275±0.0003
MLP+n2v 0.8756±0.0005 0.8973±0.0010 0.7292±0.0002
MLP+sms 0.8695±0.0008 0.9172±0.0002 0.7270±0.0003
MLP+AVG 0.8857±0.0008 0.8977±0.0018 0.7326±0.0001
MLP+GCN 0.8917±0.0006 0.9240±0.0028 0.7389±0.0003
MLP+ATT 0.8907±0.0011 0.9295±0.0000 0.7385±0.0004

PNN 0.8601±0.0005 0.8930±0.0017 0.7311±0.0004
PNN+R 0.8671±0.0002 0.8932±0.0009 0.7363±0.0002

PNN+Skip 0.8771±0.0006 0.9006±0.0012 0.7313±0.0004
PNN+n2v 0.8817±0.0004 0.9041±0.0013 0.7327±0.0004
PNN+sms 0.8758±0.0002 0.9182±0.0015 0.7330±0.0005
PNN+AVG 0.8930±0.0003 0.9052±0.0009 0.7449±0.0004
PNN+GCN 0.9042±0.0006 0.9325±0.0023 0.7458±0.0003
PNN+ATT 0.9057±0.0003 0.9357±0.0011 0.7449±0.0006

DIN 0.8635±0.0000 0.8971±0.0003 0.7288±0.0001
DIN+R 0.8752±0.0000 0.8902±0.0002 0.7360±0.0001

DIN+Skip 0.8786±0.0001 0.9048±0.0001 0.7303±0.0000
DIN+n2v 0.8832±0.0001 0.9078±0.0001 0.7319±0.0000
DIN+sms 0.8802±0.0002 0.9285±0.0001 0.7275±0.0001
DIN+AVG 0.8981±0.0003 0.9052±0.0003 0.7383±0.0002
DIN+GCN 0.9090±0.0003 0.9372±0.0001 0.7429±0.0001
DIN+ATT 0.9106±0.0003 0.9404±0.0003 0.7412±0.0000

Table 3: The AUC results on amazon datasets (Electronics
and Books) and movielens dataset. model without any ad-
dition represents the deep model with original embedding
layer. R represents the deep model with original embed-
ding layer with regularization constraints. The AVG, GCN,
ATT represent the fusion mechanism under res-embedding
structure: average, GCN, attention.TheMLP+Skip[1],n2v[8]
and sms[15] are 3 pretrain methods, means Skip-gram,
node2vec, and siamese auxiliary network.

with some other embedding methods like Skip-gram, node2vec
and siamese auxiliary network, res-embedding also acheive better
performance. The average function promotes less than the atten-
tion and GCN function. The main reason is that the average func-
tion only aggregates the nearest neighbors indiscriminately while
the other two methods take account of the different characteristics
of different neighboring items.
5.4 Comparison of parameter quantities

Models Dim of embedding AUC(Electronics)

DIN 18 0.8635
DIN 36 0.8751

DIN+AVG 18 0.8981
DIN+AVG 36 0.9105

DIN+GCN 18 0.9090
DIN+GCN 36 0.9115

DIN+ATT 18 0.9106
DIN+ATT 36 0.9129

Table 4: For the electronic dataset, theAUCof theDINmodel
uses different embedding methods under different dimen-
sions of embedding vector. Dim of embedding means the di-
mension of the embedding vectors.

In Table 3, we ensure the embedding space of comparativemethod
and res-embedding are the same. However, res-embedding uses
twice parameters compared with the original embedding structure,
so we are supposed to discuss the effect of changing of the pa-
rameters and embedding dimensions on performance. As shown
in Table 4, with the increase of embedding dimension(compared
with DIN models with 18 dim and DIN model with 36dim), the
performance of DIN is improved, which indicates that increasing
the dimension of embedding will at least not loss performance. Fo-
cusing on DIN models with 36dim, DIN+AVG model, DIN+GCN
model and DIN+ATT model with 18dim, which means that res-
embedding has the same size of parameters with original embed-
ding structure and has smaller dimensions, ourmethod is still greatly
improved. In summary, although res-embedding uses twice asmany
parameters as baseline, the improvement of res-embedding is due
to the improvement of the method itself, not the increase of the
parameters. Even if the parameters of baseline are increased to the
same as res-embedding, and the embedding dimension of baseline
is also higher than res-embedding, res-embedding still has a signif-
icant improvement.

5.5 Effectiveness of residual part

Figure 8: The relationship between the scale of the residual
part and the AUC based on the electronics dataset. The or-
ange dot means the situation that the residual embedding
disappears. The deep model is DIN with res-embedding in
attention.

In this subsection, we will verify the effectiveness of residual
embedding vectors. The experimental results are shown in Figure
8, which is based on the electronics dataset, res-embedding in at-
tention technologywith DIN. In experiments, we increase the scale
of residual embedding by controlling the regularization coefficient
of residual embedding matrix. As the scale ratio between resid-
ual and central embedding vector varies from large to small, the
performance is gradually improved. When the scale ratio between
residual and central embedding is reduced apoach to 1:10, the AUC
criteria reaches its peak value. The promotion of performance is
consistent with our theory for the smaller scale of residual embed-
dingmeans smaller envelope radius of itemswith the same interest
domain in the embedding space, which will improve the general-
ization performance. However, while continuing to reduce scale
of the residual to disappear, the AUC criteria drops slightly, which
may be attributed that over-small scale of the residual embedding
vector reduces the representation ability of the embedding layer.
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In summary, the residual part can be considered as an adjuster to
balance generalization and representation ability.

6 CONCLUSION
In this paper we propose a novel res-embedding structure to im-
prove the generalization of deep CTR prediction task. We theoreti-
cally proved that the generalization error of the depth CTR model
is related to the aggregation of embedding packets.We use the user
historical behaviors to construct the graph of items and calculate
the central embedding based on this graph. Several fusion meth-
ods are adopt to generate central embedding. Residual embedding
is used to control the degree of embedding aggregation. In the ex-
periment, we validate the effectiveness of the residual structure
on the CTR task public datasets. We also observed a significant
improvement in generalization performance, and the visualization
experiments also verified the changes in embedding structure. The
graph among items is pre-generated so far, which may be affected
by changes of sample distribution. In the future, we will consider
using an end-to-end approach to dynamically update the graph.
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