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ABSTRACT
This paper presents a method of pairwise multi-layer networks for
multi-field categorical data, which widely exists with various appli-
cations such as web search, recommender systems, social link pre-
diction, and computational advertising. The success of non-linear
models, e.g., factorization machines, boosted trees, has proved the
potential of exploring the interactions among inter-field discrete
categories. Inspired by Word2Vec, the distributed representation
for natural language, we propose a PMLN (Pairwise Multi-Layer
Nets) model to learn the distributed representation for multi-field
categorical data. In PMLN, a low-dimensional continuous vector
is automatically learned for each category in each field. The in-
teractions among inter-field categories are explored by different
neural gates and the most informative ones are selected by pool-
ing layers. Such combined categories can be further explored by
performing more gate interactions with another category and then
selected by additional pooling operations. In our experiments, with
the exploration of the interactions between pairwise categories
over layers, the model outperforms state-of-the-art models in a
supervised learning task, i.e., ad click prediction, while capturing
the most significant interactions from the data in an unsupervised
fashion.

CCS CONCEPTS
• Information systems → Computational advertising; Infor-
mation retrieval; • Computing methodologies→ Knowledge rep-
resentation and reasoning.
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1 INTRODUCTION
There are different abstraction levels within data. For the low-
abstraction continuous sensory data (e.g., images, videos, and audio)
directly acquired from the physical world, the strong correlations
(local patterns) are, quite often, known a priori within the data.
As such, one can directly embed the prior knowledge into a learn-
ing model such as neural networks to automatically distill such
patterns and consequently perform predictions [7, 13]. However,
on the other hand, for high-abstraction data from our social and
business activities, e.g., natural language and transactional log data,
the data is commonly discrete and contains atomic symbols, whose
meaning and correlation are unknown a priori. A typical solution is
to employ embedding techniques [2, 17] to map the discrete tokens
into a (low-dimensional) continuous space and further build neural
networks to learn the latent patterns.

Multi-field categorical data is a type of high-abstraction data
where the categories in each field are heterogeneous with those in
other fields. Such a type of data is very widely used in data mining
tasks based on transaction logs from many social or commercial
applications, such as recommender systems [19], social link pre-
diction [4], and computational advertising [32]. Table 1 gives an
example of multi-field categorical data in user behavior targeting
where we observe user browsing patterns; given those multi-field
categorical features, a common task is to predict their actions such
as clicks and conversions [14, 31, 33].

As there is no explicit dependency among these inter-field cate-
gories, two solutions are mainly used for building machine learning
models that extract the local patterns of the data and make good
predictions. The first solution is to create combining features across
fields, such as City:Shanghai&Weekday:Friday [3]. Such feature
engineering is expensive on human efforts and feature/parameter
space. The second solution is to build functions [20] or employ
neural networks over the embedded features [32]. These solutions
are of low efficiency because of the brute-force feature engineering
or aimless embedding interactions.

In this paper, we propose an unsupervised PMLN (PairwiseMulti-
Layer Nets) model to learn the distributed representation of multi-
field categorical data. The interactions among inter-field categories
are explored by different neural gates and the informative ones are
selected by K-max pooling layers. Note that the K-max pooling
process acts like the classic Apriori algorithm in frequent item set
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Table 1: A simple example of multi-field categorical data
from iPinYou dataset .

TARGET GENDER WEEKDAY CITY Browser
1 Male Tuesday Beijing Chrome
1 Female Tuesday Hong Kong IE
0 Male Tuesday Beijing Chrome

Number 2 7 351 6

mining and association rule learning [1]. Repeating this pairwise
interaction withK-max pooling, our PMLNmodel automatically ex-
tracts salient feature interactions and further explores higher-order
interactions. Based on effective data representation by repeated
interaction and pooling layers, fully connected layers are built to
further learn discriminative patterns to make good predictions.

To train the pairwise interaction PMLN model effectively, we
present a discriminant training method to estimating the category
vectors. Furthermore, with the exploration of the pairwise and
high-order category interactions, our PMLN model attains great
performance improvement over state-of-the-art models in super-
vised learning tasks, such as user response rate prediction, while
successfully captures the most significant interactions in unsuper-
vised learning tasks.

2 RELATEDWORK AND PRELIMINARIES
In this section, we outline the major data representation methods
that are used for representing the discrete categorical data. These
methods serve as the preliminaries of our PMLN model.

2.1 One-Hot Representation
It is common to use one-hot representation for discrete data in
natural language processing or computational advertising tasks.
For the first data sample as an example, the data is vectorized by
one-hot encoding as

[0, 1]︸︷︷︸
Gender:Male

, [0, 1, . . . , 0, 0]︸             ︷︷             ︸
Weekday:Tuesday

, [0, . . . , 1, . . . , 0]351︸                     ︷︷                     ︸
City:Beijing

, [1, . . . , 0]︸      ︷︷      ︸
Browser:IE

.

With each category as a dimension, one-hot representation pre-
serves full information of the original data. Two main problems
of one-hot representation are that (i) it may suffer from the curse
of dimensionality, especially in deep learning-related applications;
(ii) it cannot capture the similarity of each word/category pair, and
we cannot even find any relationships among the synonyms or
categories in the same field.

2.2 Distributed Representation
Distributed representation is first proposed by Hinton [11]. The
basic idea of distributed representation is training the model to map
each word into a d-dimensional vector (generally, d is the hyper-
parameter of the model, and d is far smaller than whole vocabulary
size N of words/categories), and the semantic similarity between
the words/categories can be measured through the distance (such
as cosine similarity, Euclidean distance) of their corresponding
low dimension vectors. Word2Vec [17] is one of the most widely
used methods to train the distributed word vector representation.
Compared with text, with the local patterns among the neighbor

words, multi-field categorical data has no explicit order relation-
ships among inter-field categories. Also, the text vocabulary size
(105) is often much smaller than the category size (106 ∼ 108), mak-
ing our problem more difficult. Another difference between our
category and word is that category does not take the order into
account or use any sliding window for context; in other words, we
take all categories in the same training sample as the neighbor of a
category.

Besides, typical deep network models learn the distributed rep-
resentation of discrete categorical data implicitly, because the dis-
crete data usually need an embedding layer to be feed into the deep
networks. But, the common deep network models (e.g, restricted
Boltzmann machines [22], multi-layer perceptrons [6], convolu-
tional neural networks [15] , recurrent neural networks [34]) do
not take the interactions among the categories in the different
fields into account. Therefore, to explore the interaction between
fields, product neural network (PNN) [18] uses deep neural network
model with a product layer based on the embedded feature vectors
to model the inter-field feature interactions. A weighted pairwise
interaction model [5] is proposed for entity embedding of hetero-
geneous categorical events, and Factorization Machine (FM) [19]
also uses pairwise interaction to learn implicit distributed represen-
tation. Meanwhile, both of them can only explore the interactions
between pairwise categories in 2-order1, the further higher order
interactions still cannot be explored in a better way.

2.3 User Response Prediction
Learning and predicting user response is critical for personalizing
tasks, including web search and online advertising, and the multi-
field categorical data is widely available in the user response pre-
diction task. In this task, most widely used linear model including
logistic regression [21], nonlinear models including factorization
machine [19], field-aware factorization machine [12], gradient tree
models [10]. However, these models cannot explore the high order
feature interactions or adaptively learn effective representations of
the feature.

In recent years, deep neural networks have demonstrated their
superior performance on this task. A factorization machine initial-
ized feedforward neural network (FNN) is proposed by [32], which
efficiently reduces the dimension from sparse features to dense
continuous features. Convolutional neural networks are introduced
for user click prediction (CCPM) in [15], but it only performs the
convolution on the neighbor fields, which cannot explore the full
interactions among the all fields. By adding a product layer be-
tween embedding layer and fully-connected layer, Product-based
Neural Network (PNN) [18] achieves a better performance on CTR
task, but this only explore low-order feature interactions. To take
both advantages of linear model (’wide’) and deep neural networks
(’deep’), Cheng et al. [6] proposed a Wide & Deep model, which
combines the wide net with deep net to form the final output. Based
on Wide & Deep model, DeepFM [8] and DCN [28] enhence the
wide part by cross network and factorization machine correspond-
ingly; and in the meantime, self-attention models [23, 29, 30] and

1Although FM can be possibly extended to high orders, there is little literature trying
such a setting.
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NFM [9] focus on optimize the deep part by introducing the atten-
tion mechanism and bi-interaction layers via product operations
over embeddings. More recently, DIN/DIEN [35, 36] also applied
the attention mechanism, unlike AFM, they added the attention
layer between the embedding layer and MLP, which models users’
interests for different items. Compared with above deep net archi-
tectures, our PMLN contains all their advantages and is largely
different as (i) the pairwise interaction layer can be implemented
with various gates (interactive operations) to exploration different
data interactions, and (ii) repetitive interaction and pooling opera-
tions distill non-trivial effective data pattern in an fully automatic
manner, which is like a neural generalization of the Apriori data
mining algorithm [1].

3 PAIRWISE MULTI-LAYER NETS
In this section, we introduce a PMLN (Pairwise Multi-Layer Net-
work) model and its training method in detail. We design neural
gates in the model to capture the interactions between each pair of
categories, followed by the K-max pooling layers to select the most
important interactions. We then repeat this processes to explore
higher level interactions. Figure 1 illustrates the overview of the
proposed architecture.

3.1 Interaction and Pooling Layers
Interaction Layer. To evaluate the interaction between each pair
of categories, we use a gate to obtain the interaction result. Mathe-
matically, a gate is a function f : Rd ×Rd → Rd that takes any pair
of category vectors ci and c j in the same sample c as input, and
outputs interaction result vector c ′i, j = f (ci ,c j ). The interaction
output vector c ′i, j acts as a certain combining feature of ci and c j .

Note that c ′i, j keeps the same dimension as the category embed-
ding vectors like ci and c j so that it can be further used to interact
with other categories.

We provide several options of gate f as:

f sum(ci ,c j ) = ci + c j , (1)

f mul(ci ,c j ) = ci ⊙ c j , (2)

where ⊙ is the element-wise multiplication operator. We can also
can employ more complex gates, such as the highway gate [24],
which is formulated as

f highway(ci ,c j ) =τ ⊙ д(WH (ci + c j ) + bH )

+ (1 − τ ) ⊙ (ci + c j ),
(3)

where д is a nonlinear function and τ = σ (Wτ (ci + c j ) + bτ )
represents a “transform gate”.

Then we apply the gate f on each pair of category vectors ci ,c j ,
where n is the number of field:

c ′ = [c ′1,2,c
′
1,3, · · · ,c

′
1,n , · · · ,c

′
n−2,n−1,c

′
n−1,n ]. (4)

After the interaction, an activation function will be applied to im-
plement the non-liner transformation.

K-Max Pooling Layer. We next describe a pooling operation
that is a generalization of the max pooling based on the norm length
of interaction outputs of each pair of category vectors. We keep
the K maximum interaction output vectors c ′i, j according to their
norm length, where K is the number of the original categories of

the training sample. It would keep the max-pooling result c ′kmax =
[c ′1,c

′
2, · · · ,c

′
K ] having the same size with the original embedding

matrix c and c ′K is the embedding vector in c ′ in Eq. (4) that has
top-K normal length.

Before producing an output for the interaction results, the inter-
action and K-max pooling operations will be repeated for several
times in order to capture high-level interactions among the differ-
ent field category vectors. After that, we output a prediction from
the final interaction vector representation by a fully connected
layer. Note that the above network structure can be used to build
an auto-encoder to conduct unsupervised learning [26] since the
intermediate layer can be regarded as an information-held low-
dimensional representation of the input data. We leave this for
future work, while staying with the label output network for both
supervised (containing both negative and positive examples) and
unsupervised (only containing positive examples where negative
examples are generated randomly) learning tasks.

An interesting discussion is to compare our PMLN model with
association rules mining, which aims to identify the most frequently
appeared joint category instances (items), with or without a condi-
tion. Apriori [1] is a popular algorithm for association rules mining
by exploiting dependencies between candidate frequent item sets
of length K and frequent item sets of length K − 1. In our PMLN
model, with neural networks, we provide an alternative way of gen-
erating such high-order interactions (i.e. item sets) among category
instances. Via the pooling operation, our model can also find the
most frequent category set automatically, which will be demon-
strated and tested from our experiments in the following Sections 4
and 5. To our knowledge, this is the first work to compare Apriori
data mining algorithmwith the neural network pooling mechanism.

3.2 Discriminant PMLN for Training
To train the Pairwise Multi-Layer Network model, we design a
training scheme called discriminant PMLN, which would train the
model in a supervised way for unsupervised learning of the data.

In the discriminant PMLN, we feed the Sample Encoding Module
showed in Figure 1 with a true or fake sample, the encoded sample
vector will be followed by an MLP to predict the probability p of a
true sample. As such, the generation of a fake sample would influ-
ence the learned category vector. In this paper, we generate a fake
sample following this way: first, randomly choose a sample from the
training set; second, randomly choose several categories in this sam-
ple and replace them with randomly chosen categories that belong
to the same field. For example, we get a user behavior instance x =
[Weekday:Wednesday, City:Beijing], and we randomly choose
the categoryCity:Beijing and replace it withCity:Shanghai, then
we build a fake samplex ′ = [Weekday:Wednesday, City:Shanghai].
The discriminant network is then trained to predict whether the
new sample should be a true sample. The loss function of discrimi-
nant network is average cross entropy, which would maximize the
likelihood of correct prediction:

L =
1
M

M∑
i=1

−yi log(pi ) − (1 − yi ) log(1 − pi ), (5)
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Figure 1: Sample encodingmodule. Each category pair will be fed into a gate to get the interaction between two categories. Next,
using K-max pooling to capture important interactions. Repeat above two steps, which could capture higher level category
interactions. Finally, we use a full connection layer to transform final interaction vectors into the prediction.
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Encoded

Vector

Figure 2: The discriminant PMLN model which learns the
category embedding by training a discriminator to distin-
guish the true samples from the fake ones.

where M is the number of training samples. The i-th sample is
labelled with yi ∈ {1, 0}, which means true or fake sample, and pi
is the predicted probability that the given training sample is true.

4 SYNTHETIC DATA EXPERIMENTS
To explore and add our understanding of the PMLN model, we
conduct a simulation test with synthetic data. In particular, we are
interested in understanding how the learned vectors would be able
to capture and leverage the most significant patterns embedded in
the data.

4.1 Synthetic Dataset and Evaluation Metrics
To simulate the real-world multi-field categorical data, we use mul-
tivariate normal sampling to generate the true data distribution for
the following experiments. Suppose the data has 4 fields {A,B,C,D},
each field contains 10 categories, and a sample can be represented

as x = (ai ,bi , ci ,di ). We then randomly generate the means and
covariance matrix for 4-dimensional truncated multivariate normal
sampling with two-sided truncation. This sampling method can
generate 4 float numbers between 0 and 10. We can convert the float
numbers to integer which can represent the categories in 4 fields.
In such a way, we can generate the data with specific joint distribu-
tion, which means certain categorical pair or 3-tuple likep(a4,b4) or
p(a3, c5,d6) may have a higher joint distribution probability. Recall
that in our PMLN model, we have a K-max pooling layer, which
will select the most popular category pairs in the dataset. Repeating
the pairwise interaction layers and K-max pooling layers, we can
also explore a high order categorical 3-tuple or 4-tuple etc. There-
fore, our task here is to evaluate if our model would be able to
capture these frequently occurred patterns from a given dataset; in
other words, to test if our model would be able to keep the category
pairs with the highest joint distribution probabilities in the K-max
pooling results. This processes is in line with association rule min-
ing [1], exploring the frequent categorical n-tuple from frequent
categorical (n − 1)-tuple.

We generate the positive data according to the above truncated
multivariate normal sampling and choose uniform sampling to gen-
erate the fake (negative) data. We then apply discriminant PMLN
to train the model. Because we know the true distribution of the
generated real data, the most frequent category pairs/triples are
known. We use precision and Spearman’s rank correlation coeffi-
cient to evaluate the results of 1st/2nd K-max pooling layer (cate-
gory pairs/triples pooling results), to see if the model can learn the
true joint distribution in the real data. The details of the evaluation
metrics are described in the following section.
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Figure 3: Precision and rank correlation on synthetic data, bigger embedding size and appropriate dropout rate leads to achieve
better performance.

To evaluate how our network structure and K-max pooling help
identify the significantn-tuples, we feed 1000 samples to the trained
model and record the 1st and 2nd K-max pooling layers’ results.
Then we count the frequency of the category pairs/3-tuples in
the real samples, and select top 20 ranked category pairs/3-tuples
as target. Then we count the frequency of max-pooled category
pairs/triples in the results and compare the top 20 frequent category
pairs/3-tuples in the results to calculate precision and Spearman’s
rank correlation coefficient. Precision measures the fraction of cat-
egory pairs/triples in the results that are also in the target. The
Spearman’s rank correlation coefficient measures the correlation
between two ranked lists.

4.2 Result and Discussion
Figure 3 summarizes the results of the precision and the rank cor-
relation on synthetic data. We can see that our model can easily
find over 80% of the category pairs with high joint distribution
probabilities under the best parameter settings. From the rank cor-
relation, our model can make the ranking correlation over 0.6 of
category pairs which means the category pairs with higher joint
distribution probability would be more possible to appear in the
K-max pooling result. As for the category triples case, the preci-
sion and rank correlation become lower than the category pairs’,
because finding 3-order combination is harder and relies on the
accuracy from the 2-order. We also vary the dropout rate against
those measures. It shows that dropout tends to help improving the
accuracy of captured patterns. This can be explained by consider-
ing the fact that dropout brings randomness into the selection and
allows exploration. But the best dropout rate seems rather arbitrary
and highly dependent on the other parameter settings. 2

5 REAL-WORLD DATA EXPERIMENTS
In this section, we continue our experiment using a real-world
advertising dataset for click-through rate estimation. The iPinYou
dataset [14] is a public real-world display ad dataset with each ad
display information and corresponding user click feedback [33].
This dataset contains around 19.5M ad display instances with 14.8k
positive user feedback (click). Each instance has 23 fields, and we

2iPinYou Dataset Link: https://contest.ipinyou.com/, and the code is available at GitHub
Repo: https://github.com/ying-wen/pmln.

choose 18 fields of them which have categories with occurrence
larger than 10.3

5.1 Unsupervised Learning Experiment
We have tried different parameter settings and the performance is
measured by the accuracy of our model to predict real samples. We
also calculate the rank correlation coefficient and the precision to
evaluate our model the same as we described in Section 4.1.

We continue our study on the model’s ability of capturing the
most significant patterns as we described in Section 3.2. Because
the iPinYou dataset contains the unencrypted fields and categories,
e.g. city, region and tag, so we choose the iPinYou dataset which
has been introduced above as real (positive) data. As for the fake
(negative) data, we randomly choose a sample in the iPinYou dataset
and randomly replace some categories with other categories in
the same field to generate the fake data, similar to what we have
introduced in Section 3.2. We also set up two baseline models to
compare the model accuracy performance: (i) DNN Concat model,
which concatenates category embedding vectors tomake prediction,
and (ii) DNN Sum model, which sums up the category embedding
vectors to make the prediction.

5.1.1 Result and Discussion. From Figure 5, we see that on the
iPinYou dataset, our pairwise interaction models can achieve the
accuracy of 85% which is about 1.7% improvement comparing with
the simple DNNmodels’ best case. Even the worst case in our model
is better than the DNN models’ best case. It means our model can
find the extra information during the interactions and the K-max
pooling processes. In addition, the model with interaction times
as 3 usually yields better performance than that with interaction
times as 2, which may be due to the fact that the more interaction
times capture higher-order interactions and help make more ac-
curate predictions. Besides, during the interactions, the pairs like
(female, fashion), (male, IT) which would leads high Click-through
Rate(CTR) are extracted which would be great helps to predict the
CTR.

We next use the same evaluationmetrics that described in Section
4.1 to test the ability of capturing data patterns. We find that in the
real-world dataset, our model is still able to keep high precision
and rank correlation and can achieve even better performance.

3The selected fields are weekday, hour, user agent, ip, region, city, ad exchange,
domain, url, ad slot id, ad slot width, ad slot height, ad slot visibility, ad
slot format, ad slot floor price, creative id, key page url, and user tags.

https://contest.ipinyou.com/
https://github.com/ying-wen/pmln
https://github.com/ying-wen/pmln
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Figure 4: Precision andRankCorrelation on iPinYouData; bigger embedding size and appropriate dropout rate leads to achieve
better performance.

Figure 5: Accuracy of distinguishing true impression from
fake impression on iPinYou dataset.

The precision and rank correlation on category pairs are over 0.8
which is a 30% improvement comparing to the performance on
synthetic dataset. For the category triples case, we also have similar
performance compared with the synthetic dataset.

Figure 6: Visualization of learned PMLN embeddings in 2D
via t-SNE which shows clustering by fields.

5.1.2 Field-Wise Clustering Property. We use the t-SNE [16] to vi-
sualize the learned category embeddings, which is shown in Figure
6. Every categories belong to same field will have same color in
the figures. From the Figure 6, we can find that the category em-
beddings have clustering property which means categories belong

Table 2: Examples of the nearest categories of given cate-
gories

Category region: Henan user tags: Long-term/health

Top 3 Similar
Categories

city: Hebi user tags: Long-term/motherhood
city: Shangqiu tags: Long-term/outdoors
city: Xuchang user tags: Long-term/food

Figure 7: Tags embeddings visualization in 2D via t-SNE
which shows analogy property.

to same field or similar field are intend to form a clustering. We
also can find this pattern in Table 2, given a province category
’Henan’, the nearest categories given by learned embeddings are
three cities ’Hebi’, ’Shangqiu’ and ’Xuchang’, which are belong to
’Henan’. Besides, the category embeddings learned by PMLN model
is non-linear distribution cased by the sigmoid discriminator.

5.1.3 Analogy Property. Similar to Word2Vec [17], we train high
dimensional category vectors on a large amount of data. As Figure 7,
we used t-SNE to visualize learned category embeddings of tags.
The resulting embeddings show interesting semantic relationships
between categories, such as a female/male user and their interests,
e.g., the electronic game is to a male user as beauty is to a female
user. Category embeddings with such analogy relationships could
be used to improve many existing tasks, such as Click-Through
Rate Prediction and Query Intent Prediction, and many other appli-
cations that have not yet be invented.
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Figure 8: Performance Comparison over different Parameter Settings for PMLN models.

Table 3: AUC of CTR prediction on iPinYou dataset.

Model LR FM FFM CCPM FNN PNN PMLN-FNN-1 PMLN-FNN-2
AUC 0.8323 0.8349 0.8449 0.8364 0.8453 0.8565 0.8599 0.8640

5.2 Click-through Rate Prediction Experiment
We now move to the evaluation on a supervised learning task.
We consider click-through rate (CTR) prediction, which is impor-
tant for many personalized Web services such as E-commerce, so-
cial recommendation and computational advertising [27, 31], and
even 1% improvement in this task will bring great revenue. The
most widely used CTR estimation model is the logistic regression
based on one-hot data representation. Many deep learning models
have been further investigated in CTR prediction. [32] proposed
Factorization-Machine Supported Neural Networks (FNN) models
for user response prediction. Convolutional Click Prediction Model
(CCPM) [15] and Product Neural Network (PNN) [18] have been
used in CTR prediction and gain some improvement on this task.
To our knowledge, all of above previous work focuses on directly
improving the prediction performance in supervised learning tasks
and none of them investigates the learned representation of multi-
field categorical data or how to learn the better representation.

In order to investigate our pairwise interactionmodel on the CTR
task, we use the pairwise interaction sample encoding module to
encode a training sample concatenated with the embedding vectors,
which is followed by an MLP (multi-layer perceptron) to predict
click-through probability. We choose following models as strong
baselines:

• Logistic Regression (LR): Logistic regression is the most
widely used linear model [21].

• Factorization Machine (FM): Simply apply the factoriza-
tion machine on one-hot encoded sparse features of the
training sample [19].

• Field-aware Factorization Machine (FFM): A variant of
Factorization Machine with pairwise interaction tensor fac-
torization [12].

• CCPM: A deep neural network model by introducing con-
volutional layer in the model to make click prediction [15].

• FNN: A deep neural network model based on concatenated
category vectors following with MLPs, being able to capture
high-order latent patterns of multi-field categorical data [32].

• PNN: A deep neural network model with product layer,
which is a concatenation of inner product and outer prod-
uct [18].

• PMLN-FNN-1: This is our proposed architecture that only
concatenates pairwise interaction output vectors among K-
max pooling results to form the final vector representation
and make prediction.

• PMLN-FNN-2: This is our proposed architecture that ex-
plore category vectors pairwise interaction result between
K-max pooling results and category embeddings to form the
final vector representation and make prediction.

5.2.1 Result and Discussion. We use Area Under ROC Curve (AUC)
as the evaluation metrics to measure the performance of a predic-
tion. We conduct the grid search for each model to make sure that
each model has achieved its best performance, and because the
iPinyou data is really sensitive to the downsampling rate, which
would brings 10% improvement than without downsampling case,
therefore, we choose the optimal downsampling rate to 0.1 to make
sure all the models are compared in an equal setting. Specifically,
empirically optimal hyper-parameters for the model are set as:
the category embedding size is 16, the SGD batch size is 64, the
Nadam [25] is set as SGD optimizer with default settings, the gate
type is “Mul” and the norm type for K-max pooling is L2 norm.
Then the model followed by three fully connected layer with width
[128, 32, 1]. Besides, we evaluate the performance over different
dropout rates, and find that set dropout rate as 0.1 would be the
best. We also try to compare three different activation functions
(sigmoid, tanh, relu) and set identity mapping as the baseline, the
result shows that “tanh” yields the best performance, which has
the advantages of non-linear transformation between (−1, 1), and it
may help gain more benefits on multi-field categorical data. Finally,
we compare different interaction times and set it as two (3-tuple),
suggesting that a high order of interactions helps improve the
performance, but more than two would overfit the data and thus
managed the performance.

Table 3 gives the results of our CTR experiment, compared with
various baselines. We see that there is around 3% improvement
over LR in terms of AUC. Our PMLN models also outperform the
FM/FFM/CCPM/FNN/PNN model, with more than 2.2% over the
FNN, and achieve the state of the art performance on CTR task. It
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can be explained by their ability of taking higher order information
into consideration, which helps make better decision.

In our pairwise interaction model, we also test different hyper-
parameters and settings, and the result is given in Figure 8. First,
we evaluate the performance over different dropout rates, and find
that setting dropout as 0.1 would be the best, as shown in Figure
8. We also explore the impact of interaction. From the result, the
model with 2 interaction times would have better generalization on
the test set. Finally, we compare three different activation functions
(sigmoid, tanh, relu) and set identity mapping as the baseline. The
result shows that “tanh” yields the best performance, which has
the advantages of non-linear transformation between (−1, 1), and
it may help gain more benefits on multi-field categorical data.

6 CONCLUSION
In this paper we have proposed a novel Pairwise Multi-Layer Net-
work (PMLN) model working on the multi-field categorical data.
Different from the other models, PMLN repetitively computes and
selects inter-field category pairwise interactions to automatically
explore high-level interactions, which is analogous to the Apriori
algorithm in association rule mining. Moreover, we present an effi-
cient discriminant training method to estimate the category vectors.
We also apply our pairwise interaction model on CTR prediction,
of which we have observed a significant performance gain over
several strong baselines. For future work, we plan to design more
sophisticated gates to explore different interaction patterns among
inter-field categories; also leveraging PMLN in various data mining
problems is of great interest to us.
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