
Learning Job Representation Using Directed Graph Embedding
Haiyan Luo
Indeed, Inc.

hluo@indeed.com

Shichuan Ma
Indeed, Inc.

shichuanm@indeed.com

Anand Joseph Bernard Selvaraj
Indeed, Inc.

aselvaraj@indeed.com

Yu Sun
Indeed, Inc.

sunyu@indeed.com

ABSTRACT
In recent years, embedding technologies have gained popularity 
in many areas of machine learning, such as NLP, computer vision,
information retrieval, etc.. In this paper, we propose a latent rep-
resentation of job positions consisting of job title and company 
pairs, which can capture not only similarity relations but also or-
dering relations among job positions. We first construct a directed
graph of job positions from the user’s job transition history in the 
resume data, then we train the job position embedding using an
asymmetric relation preserving graph embedding algorithm. Exper-
imental results on a career move prediction task using real-world
data set demonstrated that the proposed embedding solution can 
outperform state-of-the-art embedding methods.
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1 INTRODUCTION
In online job platforms such as Indeed.com, recommender systems
play an important role in ensuring an efficient job marketplace by 
providing job seekers with the best jobs from the right employers.
To achieve this, good representations of jobs and users’ preferences 
for different jobs are essential.

In recommender systems, latent representations are often used
to explain the interactions between users and items. For example, 
many Collaborative Filtering (CF) algorithms are item-based [17] in
the sense that they analyze item-item relations in order to compute 
item similarities. With the remarkable success of deep learning 
in computer vision and natural language processing, more and
more works have been trying to leverage deep or shallow neural
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networks to learn latent representations for users and items in
recommender systems [2, 3, 6]. These embeddings are either pre-
trained in an unsupervised fashion then plugged into supervised
models as features, or computed by back-propagation from user
action labels (e.g. clicks) in an end-to-end pipeline.

Inmost existing unsupervised embeddingworks of recommender
systems, item embedding focuses more on preserving the similarity
between items, i.e. the goal is to make embedding vectors close to
each other in the latent space when the corresponding items are
similar to each other (e.g. frequently occurred in similar contexts).
This works to some extent for job recommendations because for
most job seekers, recommending a job similar to his current job
or recently applied jobs is usually reasonable. However, for most
job seekers, other things such as career development and employer
brand are also important factors when considering a career oppor-
tunity. Thus, it would be ideal if the job embedding can also capture
such preferences for similar jobs.

Specifically, when considering new job opportunities, the job
seeker most likely will evaluate multiple factors such as compensa-
tion, location, employer brand, career potential and so on before
deciding to make a move. The preference of one job opportunity
over another in general can be reflected in the transition moves of
hundreds of thousands of other job seekers who have already made
similar career moves. This pair-wise ordering, when aggregated
over many job seekers, can be valuable information for many ap-
plications like job recommendations, salary estimation, next career
move suggestions and so on.

For each job seeker, the historic employment information and
held positions at each company can be extracted from his/her re-
sume. Using embedding technologies, a conventional approach in
this case is to treat each resume as a context and each job position
as a word, then following Word2Vec [12] model, Skip-Gram with
Negative Sampling (SGNS) can be used to train the embedding for
job positions, given a resume database. However, this approach has
its shortcomings: 1) By ignoring the sequential order among job
positions in the same resume, it does not preserve the pair-wise
preference ordering information resulting from career choices. One
typical example is that nowadays more engineers would switch
jobs from hardware companies to software companies than the
other way around. 2) For a job seeker, the job position of his/her
early year experience is likely to be quite different from his/her cur-
rent job position. By treating all job positions in the same resume
equally, embedding vectors that should be apart from each other
are brought closer together, degrading the quality of the representa-
tion. For instance, in the computer industry, there was a time when
fiber companies were very lucrative which made them very easy to
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attract top talent, but now Internet companies has become one of
the new crazes.

To address this issue, we propose to treat user resumes as sam-
pled trajectories on a directed graph, the nodes on which are (job
title, company) pairs, and the edges represents job transition inten-
sity aggregated over all job seekers. Figure 1 shows an example of
the career path of one job seeker modeled as a directed graph using
the job title and company pairs extracted from the employment
history of the resume. We use a variation of asymmetric proximity
preserving (APP) [21] graph embedding algorithm to generate job
embeddings, which can preserve the pair-wise ordering relations
within the resumes. Further, to alleviate the data sparsity problem,
We introduce truncated re-sampling to generate virtual resumes to
supplement training data.

There are various alternative ways to computing job embeddings.
For example, job embeddings can be computed from co-click or co-
apply data, which assumes that if two jobs are applied by the same
person, they should be similar to each other. Job embeddings can
also be obtained from pooling or concatenating embeddings of skills,
companies and job titles together if these embeddings are available.
Comparingwith these embedding approaches, job embeddings from
resume data proposed in this paper carries additional information
that comes from the underlying graph structure, which is missing
in the co-click or co-apply data. However, it may be more difficult
to learn the embedding because the data set is sparser.

It is also worth mentioning that in reality locations can be an-
other major factor contributing to the decision of job changes.
However, due to data sparsity issue and simplicity of modeling,
we only model the transition pairs of (title, company) instead of
the tuple of (title, company, location). Further, in most situations,
the company signal already covers the location information, since
given a company its number of working locations is very limited,
if not fixed.

Figure 1: An example of the career path of one job seeker
modeled as a directed graph, where each node is represented
by the job title and company/employer pair.

The rest of this paper is organized as follows. In Section 2, we
introduce the related work in the research community. In Section
3, we describe in detail our proposed algorithm. In Section 4, we
provide our experimental results.

2 RELATEDWORK
Graph embedding seeks to represent vertices of a graph in a low-
dimensional vector space in which meaningful relations and struc-
tural information of the graph can be captured. With graph em-
bedding, vector-based machine learning algorithms can be applied
to graph data. Graph embedding approaches can be broadly cate-
gorized into three classes [4]: Factorization based, Random Walk
based and Deep Learning based. Overall, a common underlying

assumption of the graph embedding methods is that the nodes
sharing the similar set of neighborhood are embedded into vectors
close to each other in the latent space [9].

Motivated by the success of Word2Vec [12] and GloVe [15] in
NLP task, various neural network based embedding algorithms
have been developed to model neighborhood relations on graphs [9,
20]. For example, DeepWalk [16] uses truncated random walks
on the graph to produce context, and applies a sliding window
to sample node-context pairs for Skip-Gram model [13] training.
Node2vec [5] uses a biased random walk that balances breadth-
first search (BFS) and depth-first search (DFS) methods to sample
neighboring nodes. LINE [18] optimizes objectives, preserving both
first-order proximity (pairwise proximity among the nodes) and
second-order proximity (among nodes sharing many neighbors).
These methods are proven equivalent to factorizing a high-order
proximity matrix [19].

These graph embedding methods cannot preserve the asymmet-
ric transitivity well, which is very important for directed graphs.
Asymmetric transitivity means that if there is a directed edge from
node si to node sj and a directed edge from node sj to node sk ,
there is likely a directed edge from si to sk , but not from sk to si .
One example of such asymmetric relation could be the global node
importance ranking induced from directed edges. The experiments
in [10] demonstrate that being able to preserve the global rank-
ing in node embedding can not only boost the performance of a
learning-to-ranking task, but also the performance of classification
task trained by treating node embedding as features. In our job
transition graph each node represents a job position, this asymmet-
ric transitivity relation indicates a preference order associated with
each pair of jobs.

Most of the existing asymmetric transitivity preserving graph
embedding algorithms generate two embedding vectors for each
node, one corresponding to the outgoing direction and one for
the incoming direction. HOPE [14] preserves the asymmetric role
information of the nodes by approximating high order proximity
metrics like Katz[8], Rooted PageRank [11], Common Neighbors
[11], and Adamic-Adar [1]. It essentially decomposes the induced
similarity matrices and use the decompositions to represent nodes.
APP [21] uses a directed random walk to sample node from the
graph and to generate training data, with each node also having two
embeddings as its representation. It can preserve rooted PageRank
proximity. ATP [7] takes a factorization-based approach and applies
the embedding to a few Community Question Answering (CQA)
tasks.

3 ASYMMETRIC JOB POSITION EMBEDDING
3.1 Job position transition graph
The Experience sections in user resumes contain the user’s work
experiences, with information such as company, position, start time
and end time, etc. We can construct a directed graph G = (V ,E)
from user resumes. In this graph, each node s ∈ V represents the
job position (i.e., a job title and company pair) and each edge e ∈ E
represents a transition (i.e. a job change). Thus, each resume can
be regarded as a path on graph G from the job seeker’s very first
job position sstar t to the most up-to-date one scurrent . Associ-
ated with each directed edge ei j there is a weightwi j representing
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the frequency of this transition. We normalize the weights to get
transition probabilities at each node si :

pi j =
wi j∑

j ∈Ui wi j

whereUi is the set of nodes reachable from si in 1 transition step.
We consider two job positions to be similar when job seekers

are very likely to move from one to the other and vice versa (first-
order proximity). Higher order similarities are also considered, e.g.
if many job seekers moved from (to) a similar set of jobs to (from)
these two job, then these two jobs should be similar to each other.

3.2 Advantage score
When considering directional transitions in graph G between job
positions, a job positionmay act as a transition source or destination.
Like in most asymmetric transitivity preserving graph embedding
algorithms, we compute two embeddings for each job, one (input
embedding) when it is the source and one (output embedding) when
it is the destination of a transition. For example, given job positions
i and j , their embeddings areui ,uj ,vi ,vj , whereu is the embedding
for the source node and v the embedding for the destination node.

The advantage score of node si over sj can be computed as

ui · vj − uj · vi , (1)

A positive advantage score means that more job seekers tends to
move from job i to job j rather than the other way round. Advan-
tage scores between job position pairs summarizes the job seekers’
preference as reflected in the job transition graph G. In Section 4.4
we use advantage score to refine the results of node prediction.

Note that there may be cycles in graphG , in this case advantage
score can still be used to compare each pair of nodes.

3.3 Algorithm
3.3.1 Training data generation. For a given path onG , the positive
training samples are generated by collecting all pairs of nodes fol-
lowing the transition order. For example a path si− > sj− > sk will
lead to positive pairs (si , sj ), (si , sk ) and (sj , sk ), as illustrated in Fig-
ure 1. According to the normalized weights on outgoing edges, we
conduct randomwalk with stopping probabilityγ starting from ran-
domly sampled nodes s ∈ V . Following the same protocol, positive
training samples can be generated from these paths.

Further, for each positive training sample (si , sj ), we randomly
drawK nodes not reachable from si in any path as negative samples.
Additionally, a truncated back-ward random walk is conducted
starting from si , following the reverse direction of edges. Any node
on the ensuing path observing the reverse transition order is added
as a negative sample. The same stopping probability γ is used in
back-ward random walk to control how many negative samples
from random walk we would like to introduce into the training
data.

3.3.2 Cost function. For each positive training sample (si , sj ), let
ei and ej be the embeddings for node si and sj , respectively. Let
Uneд,i be the set of nodes in graph G sampled to make negative
training pairs with node si . We optimize the following objective

logσ (ui · vj ) +
∑

sk ∈Uneд,i

logσ (−ui · vk ) (2)

where σ (x) = 1
1+exp(−x ) is the sigmoid function. Note that optimiz-

ing this cost function brings output embedding of j close to input
embedding of i if sj can be reach from si in the sampled paths. On
the other hand, output embedding of k will be moved away from
input embedding of i if si can be reached from sk in the sample
paths.

The cost function can be obtained by summing up Eqn. 2 over
all positive pairs from sample paths. It is then optimized using
stochastic gradient descent (SGD). The job position embedding
algorithm is summarized in Algorithm 3.3.2.

Input : Graph G = (V ,E) constructed from user resume data,
stopping factor γ for random walk, and learning rate λ. Output :
embedding eu and ev for each node si ∈ V
Initialize ui , vi , ∀si ∈ V as random vectors;

each s ∈ V initialize training data setUp ,Un as empty setUp ←
RandomWalk(s,γ )

⋃
PairsFromResume(s)

Un ← ReverseRandomWalk(s,γ )
⋃

NeдativeSample(s)
Us ← Up

⋃
Un

training sample x ∈ Us Stochastic Gradient Descent(x )

4 EXPERIMENT
4.1 Data Set
The data we use is a small subset of recently uploaded or updated
user resumes from our job platform. It contains a total of 6.79M
resumes, 1.06M distinct job title-company pairs, and 11.5M job
transitions. The data set is pre-processed to remove low-frequency
job title-company pairs.

The data set covers a variety of jobs from different industries and
different requirements, ranging from "psychologist", "receptionist"
to "certified welder" and vice president of finance. We built a directed
graph from the data set to characterize the job transition. There are
9.73M directed edges in the graph, corresponding to the number
of distinct job transitions pairs observed in the resumes. We can
observe the graph is very sparse. Somewhat surprisingly, if we
ignore the direction on edges, all nodes in this graph form a single
connected component.

4.2 Baseline Algorithms
We compare the performance of the proposed algorithm with 2
baseline algorithms: Skipgram and APP. Skipgram applies SGNS
directly to the resume data, treating each resume as the context
and each job position as the word. It models only the co-occurrence
relation between jobs, ignoring the transition ordering and direc-
tions. APP uses random walk with restart to sample paths on the
underlying directed graph. The starting and ending nodes of the
paths are collected to form the training data set. The embedding is
trained using SGNS. APP uses two embedding spaces to represent a
job, which can preserve asymmetric relations between node pairs.

4.3 Link prediction
The link prediction task can be regarded as a binary classification
problem. Given a set of node pairs, we need to predict if there is a
link between them in the graph. We randomly picked 10% edges
from the job transition graph as positive samples. Same amount of
negative samples are generated by randomly sampling node pairs
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that are not in the graph. To manifest the direction of the links in
positive samples, we add their reverse links to the negative samples
if they are not in the graph.

Unlike the settings of link prediction tasks in social networks,
our objective here is to examine how well the embedding learned
from the directed graph can preserve neighborhood information.
Instead of splitting graph edges into training and testing set, we
use the full data set for training and test its performance on testing
set.

For Skipgram, the similarity score between given node pairs
computed from their input embeddings are used to predict the link.
For APP and our proposed algorithm, we used similarity between
input embedding and output embedding of the node pairs to predict
the link.

Algorithm AUC
Skipgram 0.655
APP 0.792
Proposed 0.801

Table 1: Comparison of link prediction performance of Skip-
gram, APP and the proposed algorithm, evaluated by AUC.

We use ROC-AUC (Area Under the ROC-Curve) to evaluate the
link prediction performance. As shown in Table 1, our proposed
algorithm outperforms Skipgram by a large margin and slightly bet-
ter than APP. This is not surprising since Skipgram cannot capture
the local structure of transition graph well, especially the direction
of links. APP does not have this problem, but in the job transi-
tion graph there are many low frequency job positions with low
in-degree, which are not well represented in APP’s training data.

4.4 Node prediction: next career move
recommendation

While link prediction can be used to choose most probable job
transitions between random job position pairs, it makes more sense
to calculate the top-k possible next job positions based on the job
seeker’s current job for recommendation purpose.

We assume that in the absence of any other information, for
a given job position, the set of other job positions to which job
seekers have transitioned from this job position could serve as a
good signal for tasks such as next career move recommendations.
In a simplified scenario we only use learned graph embedding to
score next possible jobs. This won’t deliver the best performance
but can serve as an indicator on how well a certain embedding can
model the job transition propensity.

We randomly pick 1% of the node in the job transition graph, for
each such node s the set of nodes that s can transit to are ranked by
their difference in advantage score. We truncate the list of nodes
to keep only the top 10 nodes ( when the out-degree of s is less
than 10 we keep all nodes). From embeddings we find top-10 most
similar jobs and compute the overlap with the top-10 list computed
from the graph. This is essentially a graph reconstruction task. We
want to recover top outgoing edges from a particular node, and the
corresponding order in the weights. The precision result for all 3
embedding algorithms are shown in Table 2.

Algorithm P@10
Skipgram 0.036
APP 0.049
Proposed 0.051

Table 2: Comparison of next job recommendation perfor-
mance of Skipgram, APP and the proposed algorithm, eval-
uated by Precision@10.

It can be observed that all 3 algorithms achieved low precision in
this task. Indeed such prediction based only on historical transition
data is challenging. We can observe that both APP and the proposed
algorithm outperforms Skipgram. This could be because they can
better capture the local structure of directed graphs. The proposed
algorithms is slightly better than APP.

5 CONCLUSION
In this work, we have proposed to derive job embeddings from
resume data using asymmetric transitivity graph embedding algo-
rithm. The embeddings generated with our proposed algorithm
can preserve transition preference information in the directed job
transition graph, making it a good feature in supervised machine
learning models for job recommendations. We have compared our
embedding method with two baseline algorithms. It outperforms
both Skipgram and APP in link prediction and node prediction
tasks.
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