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ABSTRACT
As communication networks have grown, event logs have increased
in both size and complexity at a very fast rate. Thus, mining event
logs has become very challenging due to their high variety and
volume. The traditional solution to model raw event logs is to trans-
form the raw logs into features with fewer dimensions through
manual feature engineering. However, feature engineering is very
time-consuming, and its quality is highly dependent on data scien-
tists’ domain knowledge. Furthermore, repeatedly preprocessing
event logs significantly delays the scoring process, which must scan
all items in the logs.

In this paper, we present our recent study on mining high-
dimensional event logs using deep neural networks. We propose
a Midway Neural Network (MNN) to avoid both manual feature
engineering and the re-preprocessing of event logs. MNN embeds
an input feature vector from a particular time window into a dense
representation and memorizes these midway representations for in-
cremental training and prediction. The experimental results demon-
strated that the proposed method minimized human intervention,
decreased the time for training and scoring, and decreased the
memory and storage costs while maintaining a similar modeling
performance compared to traditional solutions. We hope that our
insights and knowledge can inspire colleagues who are working
on similar problems.
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1 INTRODUCTION
The most commonly used raw event logs in industry are appended
lists that contain an event ID, event attributes and a time-stamp. For
example, in online advertising, billions of users trigger millions of
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types of events every millionth of a second in online services every
day. These events may include a user’s activities on web pages,
mobile Apps, search engines, communication tools, smart devices,
videos, ad creatives, etc. Each event may only have a few attributes,
but the cardinality of some attributes can be very high. For example,
the cardinally of web page URLs and search queries can be in the
hundreds of millions. Moreover, the number of unique user IDs
in the event logs can be in the billions, and the number of events
grows by millions every second. The high variety and volume in
these event logs results in significant challenges for mining them.

The situation in Yahoo! is even more challenging. Yahoo! has
large-scale event log systems that record user’s online behaviors in
various products, including Yahoo! Finance, Yahoo! Sports, Yahoo!
Mail, Yahoo! Search, AOL.com, Huffpost, Tumblr, Flurry, Gemini,
BrightRoll, etc. Though data is anonymized by removing identifiable
information, such rich event logs can provide information on users’
demographics, personal interests, recent purchase, and travel plans
from different aspects, and therefore are very valuable for Yahoo!’s
advertising business. However, analyzing and modeling these event
logs is a nightmare for Yahoo!’s data scientists andmachine learning
engineers because the event logs are not standardized. Different
event logs are recorded in different formats, stored in different
datasets, and maintained by different pipelines.

The traditional technique for modeling raw event logs is to trans-
form the raw logs into features with fewer dimensions throughman-
ual feature engineering. Popular feature engineering techniques
include clustering sparse attributes into categories, accumulating
events over time with certain time-decay algorithms, regression-
based trending, periodical signal extractions, and others [7, 17, 19].
Feature engineering dramatically reduces the dimensionality of the
event streams, resulting in a feasibly solvable mining problem for
most of statistics and machine learning models.

However, manual feature engineering cannot work efficiently
for the large-scale data from event logs found in industry. It is
challenging to apply manual feature engineering because it relies
too much on the scientists’ domain knowledge. The extremely steep
learning curve to understand the complicated raw data significantly
impairs scientists’ productivity, thereby creating a bottleneck as
both the volume and the dimensionality of data grows exponentially
in industry. Moreover, it is difficult to prove that the manually
engineered features are optimized for a complicated application
because the process is usually too time-consuming and too costly
to operate over thousands of iterations.
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An alternative solution is Deep Neural Networks (DNNs), which
have been demonstrated to be powerful tools for automatically
exploring feature interactions in many types of data including
images [10, 15], video/audio [1, 11], nature language text [5, 18].
A typical DNN organizes its neurons into layers, and each layer
consists of one or more neurons. A neuron transforms an input
feature vector or tensor with a weight vector, which is usually the
same size of the input vector, into a single output, and passes the
output to neurons in the next layer. The weight vectors in each
neuron can be optimized using training examples through a back-
propagation process [8].

Unfortunately, DNN-based feature interaction exploration is also
inefficient or even infeasible due to the high dimensionality of the
event logs. For example, let us assume that the daily event data has
over 1 million dimensions after one-hot encoding for categorical
attributes. Since feature interactions can be measured automat-
ically, input feature vectors are simply concatenated across the
timeline without manual feature engineering. However, directly
concatenating event data in a 30-day window with daily granular-
ity results in over 30 million dimensions. Assuming there are 1000
neurons in the first layer, which is quite a reasonable size for such
a high-dimensional input, the DNN would need at least 30 billion
parameters. These parameters would usually be stored in memory,
resulting in a very high hardware cost in the present day. Note that
a finer time granularity, e.g. hourly, demands even more number of
total parameters in magnitudes.

Another main challenge of DNN-based feature interaction explo-
ration is the cost of the scoring process. Unlike the training process,
which can be scaled down by sampling the data, the scoring process
must scan all input vectors created from event logs. If we assume
that we have one billion IDs and each ID carries 30 million features,
the total data size is more than 30 × 106 × 109 = 3.75 PB. The pro-
cessing and storage of such a large data place a huge engineering
burden on the data infrastructure, and therefore limit the scoring
frequency.

In this paper, we would like to share our experience and insights
on mining high dimensional event logs with the hope that it may
be useful to colleagues facing similar problems. We propose a large
scale machine learning architecture, called a Midway Neural Net-
work (MNN), to address the above challenges in automatic feature
engineering from raw event logs. It takes a raw event stream as the
input and returns relatively small features vectors that can be used
to build a specific type of prediction model for which traditional
feature operations—such as feature clustering, aggregation, etc.—
are fully automated, thereby minimizing human intervention. In
specific, an MNN consists of several encoding DNNs, one prediction
Network (NN) and one Midway layer. An event log is first bucke-
tized into a sequence of unit time windows. In each unit window,
events are aggregated into a raw feature vector (with 106 dimen-
sions in the above example). The encoding DNN is used to encode
the raw feature vector of the latest time window into a Midway
embeddingr vector (with, e.g., 200 dimensions). The Midway layer
is used to remember the entire sequence of Midway vectors and
concatenates them into a longer output vector. The prediction NN
is then used to predict the label of the Midway output. The advan-
tages of MNN in automatic feature engineering using event log
data are listed below:

• The MNN structure enables the exploration of feature corre-
lations both within and across time windows without human
intervention;

• It dramatically reduces memory and storage usage in the
scoring process by encoding features from previous time
windows into low-dimensional midway vectors;

• It dramatically accelerates the scoring computation by pre-
venting prepossessing the raw event logs a second time;

• Both the training and scoring processes of MNN can be
performed incrementally.

The remainder of this paper is organized as follows. Section 2 de-
scribes the related prior work. The details of the proposed midway
neural networks are presented in Section 3. Experimental results
on five real event log mining tasks are presented in Section 4. Con-
clusions are drawn in Section 5.

2 RELATEDWORK
Recently, deep neural networks have attracted the attention of re-
searchers interested in the implicit measurement of feature interac-
tions due to their high capacity and end-to-end training scheme. Var-
ious neural network structures have been proposed. [29] and [20]
discovered an interaction between multi-field categorical data using
two different DNN structures, called FNN and PNN.Deep&Cross [28]
and xDeepFM [16] utilized the outer product of the features at
the bit- and vector-wise levels respectively. Deep crossing [24],
Wide&Deep NN [4], and DeepFM [9] applied a fully connected
feed-forward neural network to field-embedding vectors to model
high-order feature interactions. However, none of the listed inves-
tigations can achieve incremental scoring, leading to extremely
expensive scoring processes in terms of computation and memory
costs, especially for the large-scale data from event logs found in
industry.

To the best of our knowledge, there is no existing research that
has achieved practical automatic feature engineering using large-
scale event logs. Due to the sparsity and scability problems in both
representation and optimization, most of the existing research on
event-logmining has focused on the traditional technique ofmanual
feature engineering. For example, [2, 23] explored the feasibility of
identifying signature patterns directly from event logs. However,
the framework proposed in that work relied extensively on the
use of domain knowledge to assist with feature extraction and
selection. Massimiliano de Leoni, et al. employed a data-clustering
algorithm to analyze large-scale textual event logs based on word
frequency [27]. Though their solution is novel, its application is
limited because it can only handle several specific data types.

3 METHODOLOGY
In this section, we propose an effective approach, called Midway
Neural Networks (MNNs), for automatic feature engineering from
very high-dimensional event logs. By breaking down a event se-
quence into chunks with small, fixed-width time windows, which
are called unit time windows, MNNs apply preprocessing and au-
tomated feature generation on the incoming data stream in real
time or in a mini batch fashion. Fig. 1 shows the structure of a
typical MNN. An MNN consists of several encoding DNNs, one
prediction NN, and one Midway layer. The information in each
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Figure 1: Architecture of a typical midway neuron network.

unit time window is collected and formatted into a unit feature
vector. The encoding DNNs are used to encode the unit feature
vectors into midway vectors with a lower dimension (e.g., 200), and
the prediction NN is trained to predict the given labels using the
concatenated midway vectors. The Midway vectors are stored in a
distributed file system or index engine so that they can be used by
any application in the future.

3.1 Preprocessing of Event Logs
Before preprocessing can occur, it is necessary to define the unit
timewindow and the lookback timewindow. During the preprocess-
ing of the event logs, the raw events in each unit time window are
formatted into a so-called "unit raw feature vector." Events outside
of the lookback time window are neglected. All numerical features
are simply accumulated in each unit time window. All categori-
cal attributes are transformed into sparse representations using a
one-hot encoding scheme—which could be a multi-hot scheme ag-
gregated from multiple events—and then concatenated with other
numerical and keyword-embedding features. All individual features
are normalized using the min-max method [13] to remove the bias,
to scale the value differences of the different features, and to keep
the sparsity of the original features.

The unit raw feature vector is expected to be sparse and high-
dimensional, especially when there are categorical attributes that
have high cardinalities, such as zip codes, keywords in queries, in-
terest tags, etc. These sorts of high-cardinality categorical attributes
are common in industry. Concatenating the unit raw feature vec-
tors from a event sequence into a primary input results in an even
larger vector, which is either computationally inefficient or unfeasi-
ble to build a model from. More importantly, modeling algorithms
tend to neglect sparse features due to their low coverage. Without
appropriate feature engineering designs, sparse features can have

significant negative impacts on the model performance if sparse
features are dominant in the feature vectors.

Preprocessing is a very expensive step in terms of the compu-
tation and storage of the resulting feature vectors. It is one of the
most painful bottlenecks when mining raw event logs. Preprocess-
ing includes many complicated string multiplication operations,
which are computationally inefficient. Furthermore, the event logs
in industry are very large (e.g., tens or hundreds of terabytes) and
are usually stored in different databases or distributed file systems.
Hence, both the data transfer and disc-loading of event logs are very
time-consuming, which results in a heavy engineering burden on
the data infrastructures, especially in the scoring stage. One option
to avoid preprocessing the raw event logs multiple times during
scoring is to store all the unit raw feature vectors from previous
windows. However, this is a very space-consuming solution given
the large size of each unit raw feature vector.

3.2 Midway Neural Network (MNN)
Although feature engineering is time-consuming and error-prone,
it is commonly used in conventional modeling processes because it
effectively reduces the feature dimension, lowering memory and
computation cost and avoiding overfitting;

By using a specific deep neuron network structure, our proposed
method, called aMidway Neural Network (MNN), allows automated
feature engineering (thereby avoiding manual feature engineering
operations) with comparable modeling performance to manual
feature engineering (Fig. 1). In theMNN system, the unit raw feature
vectors of each unit time window are concatenated into a long
vector ordered by their time sequence. An empty unit raw feature
vector is allowed here if no events are observed in a unit window.
The concatenated vector contains all information recorded in the
event logs in the lookback time window (R1 - R30). The vector
count in the merged vector is equal to the number of unit time
windows in the lookback time window. The dimension of merged
feature vectors varies with the time granularity of the unit time
windows and the size of the lookback window. An MNN takes the
merged vector (ordered by time sequence) as the primary input,
which avoids any information loss in the training stage. After that,
feature engineering operations—such as feature selection, feature
clustering, feature aggregation, feature bucketization, etc.—can be
implicitly executed and automatically optimized using MNNs.

3.3 Encoding DNNs
The encoding DNNs are used to generate the low-dimensional Mid-
way vectors, which serve as encoded representations of raw inputs.
Each encoding DNN takes one unit raw feature vector from the
merged feature vectors as the input. To reduce the model complex-
ity, the encoding DNNs corresponding to all of the unit windows in
an MNN share the same structure and parameters. Fig. 2 illustrates
the structure of the encoding DNNs. Because a simple conversion of
the categorical features with high cardinality into a one-hot vector
significantly increases the size of the model, we encode the categor-
ical features separately before merging them with other numerical
features. This inner structure is expected to dramatically reduce the
number of parameters in the encoding DNNs if one-hot features
are dominant in the raw feature vector, which is common in event
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Figure 2: Architecture of a typical encoding DNN.

logs. Note that the interaction between the categorical features and
other numerical features can still be detected and optimized in the
following fully connected layers.

One interesting question is how to determine the embedding
dimension of a categorical feature. In one-hot encoding, a categor-
ical feature is transformed to multiple binary features, but only
one of them has a value of 1. Therefore, we can always perfectly
encode categorical features using a binary vector with length log2 k ,
where k is the number of categorical cardinalities. The embedding
dimension can be further reduced because the float-encoding em-
bedding vectors actually have much more information capacity
than binary vectors. Hence, log2 k serves as the upper limit of the
embedding dimension of a one-hot encoded categorical feature
with k cardinalities. For multi-hot features, the estimation is much
more complicated. However, considering the additional informa-
tion volume provided by float-encoding vectors, we simply take
log2 k as the embedding dimension for the categorical features in
our system.

3.4 Midway Layer
In an MNN, the midway layer is a relay layer between the encod-
ing DNNs and the prediction NN. The midway layer consists of a
sequence of low-dimensional midway vectors, which are generated
by the encoding DNN and ordered by their time sequence. All mid-
way vectors have the same size. The number of midway vectors
is equal to the number of unit time windows in the lookback time
window.

Though midway vectors feature information loss from the origi-
nal unit raw features, they are necessary for the following reasons:

(1) The raw input vectors of the MNN are very high dimen-
sional, especially when the time granularity is fine or the
total lookback window is long. Hence, the parameter count
may become unacceptably large if the NN is applied directly
to the raw input.

(2) The raw feature vectors are very sparse. An event may occur
only once or twice in the total lookback time window. Mod-
eling of high-dimensional sparse feature vectors has a high

(a) Prediction DNN

(b) Predition RNN

Figure 3: Illustrations of two prediction NN strutures. (a)
DNN; (b) RNN.

risk of overfitting. Common solutions such as feature selec-
tion and regularization also feature additional information
loss.

(3) A Midway vector has a much smaller size than a unit raw
feature vector. We can preserve the midway vectors from all
previous unit time windows to avoid repeatedly preprocess-
ing the raw event logs during scoring.

3.5 Prediction NN
The prediction NN achieves supervised learning using the mid-
way layers as inputs. Note that different prediction NNs can be
structured or trained separately for different objective. The Midway
vectors in the midway layer are aligned according to their time
sequence. Fig. 3 illustrates two implementations of prediction NN.
The first one (Fig. 3a) is based on DNN structures. It consists of
multiple fully connected layers that are stacked together. A batch-
normalization layer is inserted after each layer to normalize their
inputs and to fight the internal covariate shift problem [12]. The
inner structure is adjustable according to the prediction tasks. An
alternative implementation of the prediction NN is based on the
recurrent neural network (RNN), whose structure is illustrated in
Fig. 3b. The prediction RNN consists of T long short-term memory
(LSTM) units [22], whereT is the number of midway vectors in the
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midway layer. Each LSTM unit takes one midway vector as a input.
All LSTM units are chained together, and the output is observed at
the last unit connected to the latest midway vector. There are two
concerns regarding the RNN solution:

(1) Our experiment results report that the performance of DNN
structures is better (Section 4.4).

(2) The RNN structure has longer training and scoring time.
(3) In prediction RNN, the data flow must pass through all unit

time windows sequentially, whereas in the proposed predic-
tion DNN, the midway vectors are loaded in parallel and the
scoring time can be easily adjusted by changing the number
of stacked fully connect layers.

Hence, we prefer to use the stack of fully connected layers (Fig. 3a)
as the prediction NN because this structure provides better perfor-
mance, more flexibility, and shorter training and scoring times.

3.6 Training of MNN
Before training, the raw event logs are formatted as a sequence of
unit feature vectors. All feature vectors are normalized and then
concatenated together. Though the merged vectors are very high-
dimensional, their storage size is still acceptable as long as they are
stored in a sparse-vector format. The MNN is trained using mini-
batch gradient descent. In each iteration, a batch of merged vectors
are expanded to the dense format, and they are the primary inputs
for the MNN training. Back-propagation is executed to update
the parameters in the whole system. Because the encoding DNNs
share parameters and have the same structure, we can replace fully
connected layers in the encoding DNNs with convolution layers to
simplify the model structure.

To accelerate the training, the parameters in theMNNs are initial-
ized using several pre-trained neural networks. First, we establish
a symmetric auto-encoder whose top and bottom halves have the
same structure as the encoding DNNs. We sample a number of unit
raw feature vectors from different unit time windows and use them
as inputs to train the auto-encoder. After that, a DNN/RNN whose
structure is the same as the prediction NN is established and trained
using the compressed vectors generated by the auto-encoder. The
parameters in the auto-encoder and the second NN are used to
initialize the encoding DNNs and the prediction NN, respectively.
We found that this initialization methodology can result in 2- to
3-fold decrease in the training time.

3.7 Scoring of MNN
Unlike the training process, which can be scaled down by sampling
the data, the scoring process must scan all of the event logs to create
the raw feature vectors. Thus, a large amount of time is required to
preprocess the raw event logs, resulting in a heavy burden for the
data infrastructure system. Since the scoring process is run much
more frequently than the training process, it is the main bottleneck
when mining event logs outside of feature engineering.

Fig. 4 illustrates the diagram of the MNN scoring process. An
MNN reduces the scoring time by incrementally scoring the latest
unit feature vector together with the midway vectors from the pre-
vious unit time windows. Let us assume that there are t unit time
windows in a lookback window. The input for an MNN scoring
process consists of two parts: T2:t midway vectors that encode the

Figure 4: MNN scoring process.

events in previous t − 1 unit time windows and the unit raw feature
vector R1 that records the most recent events. The MNN first en-
codes the R1 into a new Midway vector T1 and then concatenates
theT1:t vectors into a single long vector in order to predict the final
score. Each new midway vector is stored once it is created. Because
of their low dimension, the storage cost of the midway vectors
is acceptable. Furthermore, they can be reused in the subsequent
incremental scoring process, which can prevents prepossessing the
raw event logs a second time. The reuse of the midway vectors dra-
matically reduces the costs of preprocessing, encoding, and storage
as well as the time required to load the data. The cost reduction
becomes even more significant if we have a longer lookback time
window and a finer unit time granularity. This incremental scoring
scheme enables the real-time scoring/prediction of new events.

3.8 Advantages of MNNs
In this subsection, we summarize the five main advantages of
MNNs:

• Quick training and deployment. The automatic feature
engineering and the standard structure of MNNs can dra-
matically improve the productivity of data scientists and,
therefore, reduce the time required for model training and
deployment.

• Efficient scoring. The MNN achieves efficient scoring by
reusing themidway vectors and avoiding the re-preprocessing
of the raw event logs.

• Incremental learning. The proposed MNN structure al-
lows incremental learning, which is significant in industry.
Let us assume that the encoding DNNs are invariant. We
only need to re-train the prediction NN if a new event occurs
or if updating is required.

• Modest resource requirements. By using low-dimensional
midway vectors, MNNs avoid direct operations on the raw
event logs, thereby reducing the memory and storage cost
of the whole system.

• Time-sensitive learning. The proposed MNN can identify
time-related patterns such as periodicity and time decay in
the high-dimensional log data.
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4 EXPERIMENTS AND EVALUATION
Estimating a user’s click-through rate (CTR) is a fundamental task
in the personalized advertising and recommendation industry [21];
thus, we use CTR estimation as the working example to evaluate
the effectiveness of the proposed MNNs. We investigate five pre-
diction tasks related to CTR estimation using large-scale real-word
event log data from Yahoo. The proposed approaches are compared
with a baseline solution involving a set of complicated feature engi-
neering operations manually optimized by our data scientists. Two
types of prediction NN structure, DNN and RNN, are implemented
and compared. The proposed MNNs successfully achieve a com-
parable or even better prediction performance in terms of AUC
in all cases. Considering the significant advantages in the areas of
automatic feature engineering and incremental scoring, the pro-
posed MNN is demonstrated to be a successful mining solution for
high-dimensional event logs.

4.1 Experiment Data
To verify the performance of the proposed MNNs, we conducted
experiments on a variety of event logs that covered almost all im-
portant products of Yahoo!. These event logs record information
on user behavior (e.g., page view, click, conversion, log-in time,
etc.) and profile (age, gender, location, etc.) in these products. The
total size of the event logs was more than 100 TB and included
information from 1.1 billion Yahoo! active device/browser IDs. Data
is anonymized by removing all identifiable information. Since all
products operate independently, all event logs are stored in dif-
ferent formats in different databases. Though these precious data
resources equip Yahoo with a broad vision of users interests and
hobbies, feature engineering is extremely difficult because nobody
has sufficient knowledge of the data on so many platforms. Hence,
it is essential to design a standard methodology to realize automatic
feature engineering from raw event logs.

4.2 Experiment Setup and Preprocessing
The event logs used in the experiment contained various informa-
tion in different data types. Our features included a series of numeric
and binary attributes, such as number of impressions, duration time
of a page view, revenue, gender, etc., as well as a series of categorical
attributes, such as segment IDs, ZIP codes, search keywords, app
category, URL domains, etc. In preprocessing, categorical attributes
were one-hot encoded. Event logs were bucketized into a sequence
of unit time windows. Events in each unit time window were ag-
gregated in the same manner. The entire preprocessing pipeline
was implemented in the Hadoop Framework [6].

Due to the high cardinalities of the categorical features, each
unit raw feature vector contained over 1 million features, but only
one thousand of them were nonzeros, i.e., approximately 99.9%
of the features in the raw feature vector had a value of ’0’. In the
experiment, the lookback time window was set to one month (30
days) and the unit time window was set to one day. Hence, there
were 30 unit raw feature vectors that were concatenated into the
merged vector. After concatenating the 30 unit feature vectors, the
merged feature vectors had 30 × 1M = 30 million features. By
storing the merged feature vectors in the sparse vector format, we
reduced the total size of the stored data to approximately 4.5 TB.

Figure 5: A typical learning curve of the proposed MNNs.

The experiments are designed to use these event logs to predict
users’ CTR in five different categories of ad contents. A set of bi-
nary 1/0 true labels is given to indicate the click/non-click of ad
impressions in each category. We use mean square error between
true labels and predicted CTRs as the loss function for the MNN
training. The category names are not given due to business confi-
dentiality. CTR prediction is important to the online advertising
industry because CTR is one of the key metrics for evaluating the
marketing effects of advertising. The following experiments were
carried out in a virtual machine with 64 vCPUs, 8 GPUs, and 448 GB
memory.

4.3 Model Training
Once a merged feature vector has been transformed to the dense
form for the training and scoring stages, it is too large to be used for
direct training, even with present-day computing power. Feature
engineering is a common solution that reduces feature dimensions
via a number of aggregation and clustering operations. However,
feature engineering is very time-consuming and its quality is highly
dependent on data scientists’ data intuition and their understanding
of the raw data. Thus, it has become one of the main bottlenecks of
large-scale machine learning in industry. One motivation of MNNs
is to release data scientists from such tedious work.

In the experiment, the total 1.1 billion browser/device IDs in
the dataset were split into random training, validation, and test
datasets with respective the proportions of 0.4, 0.1, and 0.5. The
training dataset was used as the primary inputs to the MNNs dur-
ing training. We first used the encoding DNNs to generate low
dimensional midway vectors that represented the raw feature vec-
tors. The structure of the encoding DNNs is shown in Fig. 2. All
encoding DNNs share the same structure and parameters. Because
the one-hot features were dominant in the raw feature vectors, we
encoded the categorical features separately before merging them
to other numerical features. We took the upper limit, i.e., log2 k , as
the embedding dimension of each categorical feature, where k was
the categorical cardinality. Hence, over 1 million one-hot sparse
features were finally compressed to just 50 dense features. After
merging with other numerical features, we had 10893 features at
Layer "compressed_1". The remainder of the encoding DNNs was
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(a) (b) (c)

(d) (e)

Figure 6: Performance comparison between Baseline 1, Baseline 2, and the proposed MNNs in terms of ROC curves and AUCs.

two sequential, fully connected layers. The dimensions of these two
layers were 2000 and 1000, separately. All of the intermediate layers
used rectifier activation functions. The last layer, which was the
midway layer, used a linear activation function. In our experiment,
the dimension of the midway vectors was 200. The parameters in
the encoding DNNswere initialized with a pre-trained auto-encoder
with the same structure to accelerate the training.

The prediction NN had two different implementation solutions:
DNN and RNN. The DNN solution consisted of five fully connected
layers (Fig. 3a). Batch normalization layers were inserted after each
fully connected layer. The RNN solution consisted of a chain of
30 LSTM units (Fig. 3b). Both solutions took the midway layer
as the primary input, which is a time-wise concatenation of the
midway vectors. The usage of the midway vectors reduced the
feature volume by 80%. The parameters in both the DNN and RNN
implementations can be initialized with a pre-trained DNN/RNN
with the same structure.

The MNN structure is implemented using Tensorflow.We choose
Adam [14] and mean squared error (MSE) as the optimizer and loss,
respectively. Because clickers are aminority in the entire population
of the training set, we balanced the weight of clickers and non-
clickers with class weights that were inversely proportional to their
frequencies. If no loss improvement was observed for at least three
consecutive epochs, the learning rate was reduced by half (adaptive
learning-rate adjustment). The training process was terminated
when no loss improvement was observed after 5 consecutive epochs
(EarlyStopping). Otherwise, the training was terminated after 100
epochs. It took approximately 7.3 minutes to finish a single epoch,

where each epoch scanned two million users in the training data
set. Thus, the total training time was approximately 12 hours.

4.4 Performance Evaluations
The performance of the proposed MNNs is evaluated using five real
CTR-prediction tasks from Yahoo!. Note that We propose the use
of a stack of fully connected layers (Fig. 3a) for the implementation
of the prediction NN. The results are compared to two baseline
methods.

The first baseline method is the modeling methodology that is
running in the current production line. Raw event logs are trans-
formed into features with relatively lower dimensions through a
set of complicated manual feature engineering operations. It takes
three data scientists more than three months to optimize the feature
engineering strategy. A distributed logistic regression model is built
using SPARK [25] with 500 work nodes, 5 TB of memory and 2500
cores. Random Forest [26], Gradient Boosting Decision Tree [3], or
other more complicated algorithms are not used in the production
line due to the concerns of computational costs.

The second baseline method is to replace the stacked fully con-
nected layers in the prediction NNwith a LSTM chain with lengthT ,
where T is the number of midway vectors in the midway layer.

Fig. 5 shows the learning curve of the training process. No over-
fitting is observed in the training stage because the training and
validation loss decrease monotonically at the same pace.

Fig. 6 illustrates the ROC curves and AUCs of the five prediction
tasks. In Experiment (a) and Experiment (b), the performance of
the proposed method is significantly better than that of Baseline 1.
A better design of feature engineering strategy may reduce this
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(a)

(b)

Figure 7: Comparison of average training and scoring time
of the five experiments (unit: hour). (a) training time; (b) test
time. The proposed approach provides the shortest training
and test time in all cases.

gap. In the rest cases, the proposed MNNs have similar ROC curves
and comparable AUCs, compared with other baseline methods.
Another observation is that compared to the RNN-based prediction
NN (Baseline 2), the DNN-based solution (Proposed) reports better
AUC in all cases.

The proposed MNN structure has the shortest training and scor-
ing time, which is indicated in Fig. 7. Compared to Baseline 1, the
scoring time of the proposed method is reduced by a factor of 6.
Efficient scoring is the second main contribution of MNNs, other
than automatic feature engineering.

5 CONCLUSIONS
Industry commonly uses raw event logs in their applications, which
usually consist of an ever-growing list of records that include an
event ID, a time-stamp and a large number of other attributes. Most

of these other attributes are sparse categorical data, which have very
high cardinalities. The traditional method for modeling raw event
logs is to use manual feature engineering to transform the raw logs
into features that have lower dimensions. However, manual feature
engineering depends significantly on human input, which makes
it a bottleneck because both the volume and the dimensionality of
data is growing exponentially in industry. Recently, DNN-based
feature interaction exploration solutions are proposed to avoid
manually build up high-order cross features. However, However, it
is not practical to employ them for mining event logs because all
of the event logs must be preprocessed for feature extractio during
every scoring process.

In this paper, we present our recent study on CTR prediction
using high-dimensional event logs from Yahoo!. We propose a novel
approach, which is called a Midway Neural Network (MNN), per-
forms automatic feature engineering—including the identification
of time-series features from growing raw event logs with high
dimensional categorical and numerical attributes—with practical
costs in terms of memory/storage/computation usage. AnMNN con-
sists of several encoding DNNs, one prediction NN, and oneMidway
layer. Each encoding DNN is used to encode the raw features in a
narrow time window in millions of dimensions into a much shorter
embedding vector, called the Midway vector. The Midway layer is
used to remember the sequence of Midway vectors from each of
the narrow time windows in the event logs and then to concate-
nate them into a longer vector. The prediction NN is then used to
model the concatenated Midway vector without any manual feature
engineering operations. Additionally, an MNN also supports incre-
mental training and scoring. The memory/storage/computation
costs are limited, namely, proportional to the dimension of mid-
way layer, which is usually one or two magnitudes less than the
time-aligned raw features across all event logs. Our experiments on
user online behavior modeling show that the proposed MNNs have
comparable prediction accuracy with much lower computational
costs (in terms of memory, storage, and CPU time) compared with
modeling a set of complicated feature engineering operations.
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