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ABSTRACT
In online learning and decision making problems such as contextual
bandit, a crucial trade-off is about the complexity of the model:
while a complex model can potentially deliver better performance,
the slower inference speed that comes with it would often lead
to violations of the real-time requirements. On the other hand, a
simple model can have the advantage of fast inference speed, but
its performance is usually less desirable.

We tackle this problem by leveraging knowledge distillation
technique. In particular, we propose to rely on a simpler model for
real-time decision making, in the meantime we use a more complex
teacher model to ’guide’ the student model towards better perfor-
mance. To address the mismatch of inference speeds between the
teacher model and the student model, we introduced a replay buffer
to cache the training data. Experimental results on two public data
sets confirmed that our approach is able to significantly improve the
inference speed in online decision making, and greatly enhances
the performance of the student model.
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1 INTRODUCTION
Contextual multi-arm bandit (contextual bandit for short) is an
extension of classic multi-arm bandit (MAB) where at each iteration
an context vector 𝑥 is observed. This context vector, along with
historical actions and rewards, can be used by a policy to choose the
best arm to play. As a natural formulation for most real-life online
decision making problems, it fits well in many sequential decision
making applications, including recommender system [18, 20, 27, 30],
ads creative optimization [14, 23, 31], information retrieval [3, 9,
16] etc. Different algorithms were proposed to solve contextual
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bandit problem, including LinUCB and LinTS [1, 20], etc., where a
linear relation between an arm’s expected reward and the context
is typically assumed.

With the recent advances in deep learning and approximate
Bayesian methods, neural networks have been used to model the
context-reward relation [5, 34]. Although convergence bounds are
hard to derive formany cases [24], applying deep neural networks to
contextual bandit has shown competitive performance on a variety
of data sets.

One problem with deep contextual bandit algorithms is that they
tend to be slow at inference time comparing to traditional linear
approaches. This problem becomes more severe when the number
of arms becomes large. For a contextual bandit problem with 𝑁

arms, the network needs to be evaluated 𝑁 times at each inference
step. Even in the case when arms are parameterized and heuristic
optimization is performed (e.g. [14]), multiple evaluations of the
neural network is unavoidable. For applications such as ads and
recommendation systems, decisions have to be made in real-time
with latency requirement around tens of milliseconds. Thus, slow
evaluation time would not be acceptable.

Driven by the need to perform inference faster, or on memory
limited devices, there has been a lot of work in the literature fo-
cusing on model compression of deep neural networks. A variety
of techniques are proposed, including quantization or binariza-
tion [6, 7, 10, 12], pruning [13, 28], factorization [8, 26], knowledge
distillation [15, 25, 32], etc.

Inspired by the idea of teacher-student knowledge distillation [15],
we propose a novel approach for solving contextual bandits prob-
lem, as shown in Figure 1. In this schema, we train a compact neural
network to model the relation between context, action and reward.
This is done with the help of a pre-trained, full-complexity ’teacher’
model. The compact model, also referred to as ’student’ model, is
then used for online learning and decision making in contextual
bandit, since it can perform inference much faster. Parameters of the
compact model are updated online based on the observed feedback
as well as knowledge from the teacher model.

We evaluate the proposed approach offline, on CIFAR-10 and
Criteo’s display ads CTR prediction data set. Its performance is
compared to two groups of baselines: the compact model with the
student model architecture while not learning from the teacher
model outputs, as well as the deep contextual bandits with full-
complexity models. Experiment results show that our approach out
performs the former in terms of regret, and latter in terms of speed.
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Figure 1: Knowledge distillation bandit

2 PRELIMINARIES
2.1 Contextual multi-armed bandit
In the basic contextual bandit setup, an agent needs to make sequen-
tial decisions at time steps {1, 2, · · · ,𝑇 }, based on past observations
of the world. At each time step 𝑡 ,

• The agent observes a current context vector 𝑥𝑡 and is given
a set of arms 𝐴𝑡 or actions to choose from.

• Based on observed payoffs in previous time steps, the agent
chooses an arm 𝑎𝑡 ∈ 𝐴𝑡 , and receives payoff 𝑟𝑡,𝑎𝑡 whose
expectation depends on 𝑥𝑡 and 𝑎𝑡 .

• The agent can improve its arm-selection strategy with the
newly collected observation (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡,𝑎𝑡 ). The objective is
to minimize the ’regret’, which is defined as

𝑅Ω (𝑇 ) = 𝐸 [
𝑇∑
𝑡=1

𝑟𝑡,𝑎∗𝑡
] − 𝐸 [

𝑇∑
𝑡=1

𝑟𝑡,𝑎𝑡 ] (1)

where Ω is the agent’s arm-choosing policy and 𝑎∗𝑡 is the
arm with maximum expected payoff at time 𝑡 . Equivalently,
the performance of contextual bandit algorithm can also be
evaluated by cumulative rewards.

• For arms that are not chosen at time 𝑡 , no reward is observed
for that time step.

Many algorithms can be found in existing literature that solves
the contextual bandit problem and its variations. In recent years,
combining deep neural networks with contextual bandit to solve
online decision making problems has become an attractive idea [5,
24]. While popular techniques such as LinUCB and Thompson
sampling are extended to deep neural networks, it was realized that
the high complexity and slow inference time of deep networks had
become an obstacle to adopting deep contextual bandit algorithms
in real-time applications [24].

2.2 Knowledge distillation
Knowledge Distillation (KD) can be considered as one type of model
compression which trains a smaller model (student) with low re-
source requirements and hopefully small performance degradation
comparing to an original, more complex model (teacher). Hinton
et al. [15] first proposed the concept of KD in the teacher–student
framework by using the teacher’s softened output to guide the
student model’s learning. The student model is trained with a dis-
tillation loss in addition to the task loss.

After this seminal work, many modifications were proposed [22,
25, 32]. Some transfer signals other than output, e.g. intermediate
layer weights, other work applies the idea to large models such as
BERT [29, 33]. There is one line of research that focuses on "online
knowledge distillation" [2, 4, 19]. The idea is more about using large
scale parallel training in the absence of pre-trained powerful teacher
model. Some can deliver better performance than state-of-the-art
approaches without sacrificing training or inference complexity.
Our approach is different from this because we aim at improving
inference time speed with KD.

3 DISTILLED DEEP CONTEXTUAL BANDIT
3.1 Algorithm overview
To leverage the high performance of the teacher model while achiev-
ing low latency of online inference for contextual bandit algorithm,
we propose a simple yet powerful approach for performing con-
textual bandits using knowledge distillation. We assume binary
rewards in the remaining of the paper. However, our approach can
be easily adapted to contextual bandit problems with continuous
rewards. The algorithm assumes starting with pre-trained teacher
models, one for each arm (or one single pre-trained model when
arms are parameterized) that was trained offline. While having high
accuracy, the teacher model takes long time to predict due to its
complexity and thus is infeasible to be used for online decision
making. We use a light weight student model to make decisions
online. The student model learns from the behaviors of both the
teacher model as well as the ground truth, which is partially ob-
served rewards associated with chosen actions.

To allow the teacher model to provide guidance for the student
model during online updates, we introduce an experience replay
buffer similar to that used in neural network based reinforcement
learning [17, 21]. Our goal here is not to remove undesirable tem-
poral correlations (because there is no dynamics in our case) in
training sample, but to accommodate the speed gap between the
teacher model and the student model.

With this experience replay buffer, online updates of the student
model are still performed in mini-batches, following the procedure
described below:

• Upon receiving a context vector 𝑥𝑖 , the student model makes
a decision 𝑎𝑖 using Thompson sampling algorithm with
dropout (Algorithm 1). It then receives a reward 𝑟𝑖 and stores
a tuple (𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 ) into the replay buffer.

• The teachermodel samples data points from the replay buffer,
and augments each tuple (𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 ) with (𝑥𝑖 , 𝑎𝑢 , 𝑟𝑖 ), where
𝑎𝑢 ∈ A \ 𝑎𝑖 is unselected, counterfactual action, and 𝑟𝑖 the
softened reward generated by the teacher model.

• At the end of each time interval, the student model randomly
draws mini-batches from the replay buffer, and updates its
own parameters by minimizing cost function described in
Section 3.2.

A schematic plot is given in Figure 2. Note that we can also update
the teacher model in mini-batches using the data in the replay buffer.
Its newly gained knowledge is also transferred through distillation
to the student model.

The replay buffer implements a FIFO replacement policy and we
choose the size of the buffer to decide how much stale data points
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Algorithm 1 Thompson Sampling with Dropout
Coefficients for student models at step 𝑡 𝜃𝑡 ; Student Models
𝑀𝑎
𝑠 (𝐶;𝜃 ); Drop out rate 𝜖 ; Pre-trained Teacher Model𝑀𝑎

𝑡 (𝐶);
for t = 1, 2, . . . ,𝑇 do

Receive context 𝐶𝑡
Generate 𝑀𝑎

𝑠 𝜖 (𝐶;𝜃 ) by randomly setting neuron to 0 with
probability 𝜖

Selection action𝐴𝑡 = 𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝐶𝑡 ;𝜃𝑡 ) based on𝑀𝑎
𝑠 𝜖 (𝐶 ;𝜃 )

Take action 𝐴𝑡
Observe reward 𝑅𝑡
Append (𝐶𝑡 , 𝐴𝑡 , 𝑅𝑡 ) to the replay buffer (partial list of histor-

ical data) 𝐻
Update 𝑀𝑎

𝑠 (𝐶;𝜃 ) with 𝐻 and 𝑀𝑎
𝑡 (𝐶) using adam optimizer,

with loss function described in Section 3.2
end for

Figure 2: The student model online update with experience
replay buffer

to keep. Because the teacher model is much slower than the student
model, it cannot score all the data points in real-time, so we only
use the teacher model to augment random samples (of unscored
points) in the replay buffer. The down-sample rate 𝜖 is decided
based on its processing capacity.

3.2 Loss function
In contextual bandit problems, only the rewards of chosen arms
can be observed. For a given arm 𝑎, when the ground truth reward
is available, the loss function that is computed from ground truth
for a given sample 𝑖 is given by Equation 2:

𝐿𝑎𝐾𝐷 (𝑖) = (1 − 𝛼)𝐿(𝑟𝑎 (𝑖) , 𝑦𝑎 (𝑖)𝑠 ) (2)

where 𝐿 is the cross-entropy loss for student model, 𝑟𝑎 (𝑖) the ground
truth reward arm 𝑎 receives for sample 𝑖 , 𝑦𝑠 is the predicted reward
computed by the student model when a given arm 𝑎 is chosen.
Parameter 𝛼 ∈ [0, 1] controls the relative contribution between
ground truth label and teacher model predictions.

When scores from teachermodel is available for the given sample,
an additional loss function term is given by the following equation

𝐿𝑎𝐾𝐷 (𝑖) = 𝛼𝐷𝐾𝐿 (𝜎 (
𝑦
𝑎 (𝑖)
𝑡

𝑇
), 𝜆(𝑦

𝑎 (𝑖)
𝑠

𝑇
))𝑇 2 (3)

where 𝑦𝑡 is the output of teacher models for the given arm, 𝑇 is
the temperature, 𝜎 is the softmax function and 𝜆 is the log-softmax
function. Both 𝑇 and 𝛼 are hyperparameters that can be tuned.

As describe in Section 3.1, when a data sample is scored by the
teacher model, we compute the teacher model’s output for not only
the arm that is pulled, but also for those arms that are not actually
pulled, given the same context. This additional information helps
the student model to learn the reward function of less-pulled arms
more efficiently, thereby speeds up the distillation training.

When learning in batches, aggregating Equation 2 and Equation
3, loss function for arm 𝑎 for a given batch is given by:

𝐿𝑎𝐾𝐷 =(1 − 𝛼)
𝑁∑
𝑖=1

𝐼𝑔 (𝑎, 𝑖)𝐿(𝑟𝑎 (𝑖) , 𝑦𝑎 (𝑖)𝑠 )

+𝛼
𝑁∑
𝑖=1

𝐼𝑡 (𝑖)𝐷𝐾𝐿 (𝜎 (
𝑦
𝑎 (𝑖)
𝑡

𝑇
), 𝜆(𝑦

𝑎 (𝑖)
𝑠

𝑇
))𝑇 2

(4)

Here, 𝑁 is the batch size, 𝐼𝑔 (𝑎, 𝑖) is the indicator function for
whether arm 𝑎 is selected for sample 𝑖 , 𝐼𝑡 (𝑖) is the indicator function
for whether sample 𝑖 is scored by teacher model.

Let 𝑁𝑎 be the number of times arm 𝑎 is selected by the policy,
𝑁𝑡 be the number of times the output from the teacher model
is available in the given batch, then the above loss function is
equivalent to:

𝐿𝑎𝐾𝐷 = (1−𝛼)𝑁𝑎
𝑁

𝐿(𝑟𝑎 (𝑖) , 𝑦𝑎 (𝑖)𝑠 ) +𝛼 𝑁𝑡
𝑁

𝐷𝐾𝐿 (𝜎 (
𝑦
𝑎 (𝑖)
𝑡

𝑇
), 𝜆(𝑦

𝑎 (𝑖)
𝑠

𝑇
))𝑇 2

(5)
The contribution of loss from ground truth label for arm 𝑎 is

thus not only driven by 𝛼 , but also number of times the arm is
chosen, as well as the number of times scores from teacher model
is available. Since the number of times the arm is chosen varies
for different arms, the relative contribution of ground truth and
teacher models in the loss functions for different arms will vary,
causing bias for this naive approach. To alleviate this problem, we
modify the contribution to loss function from ground truth for the
distilled bandit algorithm as the following:

𝐿𝑎𝐾𝐷 = (1 − 𝛼) 1
𝑝𝑡𝑎

𝐿(𝑟𝑎, 𝑦𝑎𝑠 ) (6)

where 𝑝𝑡𝑎 =
𝑁𝑎

𝑁
is the probability of arm 𝑎 being chosen up to

time 𝑡 . We apply pseudo counts to the calculation of 𝑝𝑡𝑎 in order to
avoid numerical issues in cold start situations. We also apply lower
thresholds to 𝑝𝑡𝑎 so that for rarely pulled arms the probabilities do
not become too small, otherwise they’ll dominate the loss function.
The 𝑝𝑡𝑎 is thus calculated as

𝑝𝑡𝑎 =
𝑁𝑎 + 𝛽0
𝑁 + 𝛽1

(7)

In all our experiments presented in the next section, we set the
parameters 𝛽0 = 𝛽1 = 100.

4 EXPERIMENTS
4.1 Image classification on CIFAR-10
Any fully-labeled classification modeling data set can be turned into
contextual bandit data set, which can further be used as benchmark
data to evaluate contextual bandit algorithms. We follow the same
approach as Beygelzimer and Langford (2009) to simulate a contex-
tual bandit data set using the CIFAR-10 data. Specifically, given any
image 𝐶𝑖 , we train a 5-layer convolutional neural network as the
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Figure 3: Cumulative Rewards Plot for CIFAR-10 Data

student model to predict the label. We then compare the prediction
results with the ground truth label of the same image. If prediction
is correct, we receive reward 1. Otherwise, the received reward is 0.
Note that with this setting, we only know whether the prediction
of an image’s label is correct or not, while having no information
about labels that wasn’t chosen by our policy. The student model
learns from both the ground truth of rewards it has received, as
well as a teacher model, which is a pre-trained MobileNet. We use
this as a proof-of-concept to test the effectiveness of our approach.

We first compare the inference time of our model. From Table 1,
we can see that the student model dramatically speeds up decision
making, dropping inference time from 7.7 ms to 0.9 ms.

Models Inference Time (ms)
Teacher Model 7.7
Student Model 0.9

Table 1: Inference time evaluation comparing the student
and teacher models on the CIFAR-10 classification problem.

We then evaluate the performance of our student model by check-
ing the average cumulative rewards over time. We compare the
performance of the student model trained using both the teacher
model and the ground truth. In this experiment, we compare the
effect of different weights 𝛼 on the performance of the student
model. From Figure 3, we can see that student model trained with
teacher model outputs (𝛼 > 0) performs significantly better than
the model trained solely on ground truth (𝛼 = 0). In addition, includ-
ing ground truth enhances the performance of the student model
compared to training the student model solely using outputs from
the teacher model (𝛼 = 0.9 compared to 𝛼 = 1.0). This is consis-
tent with previous observations that including the ground truth
enhances the performance in knowledge distillation [15].

As discussed in section 3.1, in online learning situations, due
to the limitation of inference speed from the teacher model, it
is unable to score every sample in the replay buffer. Instead, it

Figure 4: Effect of Different sample ratio 𝜖

samples on average 𝜖 (0 < 𝜖 < 1) data from the replay buffer to
score, where 𝜖 varies depending on relative speed between teacher
and student models. We compared the effect of different values 𝜖 on
the performance of the student model. From Figure 4, we can see
that our algorithm is able to tolerate very large inference speed gap
from the teacher model. We have observed significant performance
lift even when 𝜖 = 0.05.

In summary, our approach is effective on achieving both high
performance and low latency, as tested on the CIFAR-10 data.

4.2 Display ads click through rate prediction
We also evaluate the performance of our approach on Criteo’s
display ads data set, which is a well-known benchmark for CTR
prediction tasks. Criteo’s dataset contains 45 million samples and
each sample has 13 integer features and 26 categorical features.
Since the meanings of the features columns are undisclosed, to
convert the data set to be used in contextual bandit experiment
we have to pick one categorical feature and treat if as adjustable
parameter (i.e. arms). In the following we picked feature C17 as
arms. The reward is binary (click or not click). We pre-trained a
DeepFM model [11] as our teacher model using a subset of the
data. We then ran distillation bandit algorithm on the remaining
data, training a factorization-machine as student model with both
the ground truth and the teacher model as described above. The
inference time of the student model and the teacher model are
compared in Table 2.

Models Inference Time (ms)
Teacher Model 58.4
Student Model 15.2

Table 2: Inference time evaluation comparing the student
and the teacher model on Criteo data.

Figure 5 shows the average rewards of distillation bandit algo-
rithm compared to the baseline algorithm, which is student model
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Figure 5: Cumulative Reward Result for Criteo Data

trained only on the ground truth. As shown in the figure, includ-
ing teacher model significantly enhanced the performance of the
algorithm.

5 CONCLUSIONS
Motivated by the need to trade-off model complexity against infer-
ence time in online optimization, we proposed to apply knowledge
distillation to, in particular, deep contextual bandit problems. We
demonstrated that our approach is able to significantly reduce in-
ference time when comparing to complex models, and outperforms
compact models that are not leveraging knowledge distillation. To
our knowledge, this is the first time that knowledge distillation tech-
nique is applied in a contextual bandit setting. The approach we
described here enables additional complex features such as image
and high dimensional embeddings to be incorporated into online
optimization models in various applications, including display ads
ranking and recommender systems.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual

Bandits with Linear Payoffs. ArXiv abs/1209.3352 (2013).
[2] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl,

and Geoffrey E. Hinton. 2018. Large scale distributed neural network training
through online distillation. ArXiv abs/1804.03235 (2018).

[3] Djallel Bouneffouf, Amel Bouzeghoub, and Alda Gançarski. 2013. Contextual
Bandits for Context-Based Information Retrieval, Vol. 8227. 35–42. https://doi.
org/10.1007/978-3-642-42042-9_5

[4] Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and Chun Chen. 2020. Online
Knowledge Distillation with Diverse Peers. ArXiv abs/1912.00350 (2020).

[5] Mark Collier and Hector Urdiales Llorens. 2018. Deep Contextual Multi-armed
Bandits. ArXiv abs/1807.09809 (2018).

[6] Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1. ArXiv
abs/1602.02830 (2016).

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-
nect: Training Deep Neural Networks with binary weights during propagations.
ArXiv abs/1511.00363 (2015).

[8] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting Linear Structure Within Convolutional Networks for Efficient
Evaluation. In NIPS.

[9] Dorota Glowacka. 2017. Bandit Algorithms in Interactive Information Retrieval.
Proceedings of the ACM SIGIR International Conference on Theory of Information
Retrieval (2017).

[10] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. 2014. Compressing
Deep Convolutional Networks using Vector Quantization. ArXiv abs/1412.6115
(2014).

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
Proceedings of the IJCAI (2017).

[12] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In ICML.

[13] Song Han, Jeff Pool, John Tran, andWilliam J. Dally. 2015. Learning bothWeights
and Connections for Efficient Neural Network. ArXiv abs/1506.02626 (2015).

[14] Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and S. V. N. Vishwanathan.
2017. An Efficient Bandit Algorithm for Realtime Multivariate Optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM,
1813–1821. https://doi.org/10.1145/3097983.3098184

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in
a Neural Network. arXiv:1503.02531 [stat.ML]

[16] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2011. Contextual
Bandits for Information Retrieval.

[17] Long ji Lin. 1993. Reinforcement learning for robots using neural networks. In
Technical report DTIC Document.

[18] Anísio Lacerda. 2015. Contextual Bandits for Multi-objective Recommender
Systems. 2015 Brazilian Conference on Intelligent Systems (BRACIS) (2015), 68–73.

[19] xu lan, Xiatian Zhu, and Shaogang Gong. 2018. Knowledge Distillation by On-
the-Fly Native Ensemble. In Advances in Neural Information Processing Systems 31,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.). Curran Associates, Inc., 7517–7527. http://papers.nips.cc/paper/7980-
knowledge-distillation-by-on-the-fly-native-ensemble.pdf

[20] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-
Bandit Approach to Personalized News Article Recommendation. CoRR
abs/1003.0146 (2010). arXiv:1003.0146 http://arxiv.org/abs/1003.0146

[21] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. 2015. Continuous
control with deep reinforcement learning. CoRR abs/1509.02971 (2015).

[22] Asit K. Mishra and Debbie Marr. 2018. Apprentice: Using Knowledge Distillation
Techniques To Improve Low-Precision Network Accuracy. ArXiv abs/1711.05852
(2018).

[23] Daisuke Moriwaki, Komei Fujita, Shota Yasui, and Takahiro Hoshino. 2019.
Fatigue-Aware Ad Creative Selection. arXiv:1908.08936 [cs.CY]

[24] Carlos Riquelme, George Tucker, and Jasper Snoek. 2018. Deep Bayesian Ban-
dits Showdown: An Empirical Comparison of Bayesian Deep Networks for
Thompson Sampling. In International Conference on Learning Representations.
https://openreview.net/forum?id=SyYe6k-CW

[25] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2015. FitNets: Hints for Thin Deep Nets. CoRR
abs/1412.6550 (2015).

[26] Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. 2013. Low-rank matrix factorization for Deep Neural Network
training with high-dimensional output targets. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (2013), 6655–6659.

[27] Yilin Shen, Yue Deng, Avik Ray, and Hongxia Jin. 2018. Interactive recommenda-
tion via deep neural memory augmented contextual bandits. Proceedings of the
12th ACM Conference on Recommender Systems (2018).

[28] Suraj Srinivas and R. Venkatesh Babu. 2015. Data-free Parameter Pruning for
Deep Neural Networks. In BMVC.

[29] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient Knowledge Distilla-
tion for BERT Model Compression. ArXiv abs/1908.09355 (2019).

[30] Liang Tang, Yexi Jiang, Lei Li, Chunqiu Zeng, and Tao Li. 2015. Personalized
Recommendation via Parameter-Free Contextual Bandits. Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2015).

[31] Liang Tang, Rómer Rosales, Alok Kumar Singh, and Deepak Agarwal. 2013.
Automatic ad format selection via contextual bandits. In CIKM.

[32] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. 2017. A Gift from Knowl-
edge Distillation: Fast Optimization, Network Minimization and Transfer Learn-
ing. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017), 7130–7138.

[33] Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. 2019. Extreme
Language Model Compression with Optimal Subwords and Shared Projections.
ArXiv abs/1909.11687 (2019).

[34] Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020. Neural Contextual Bandits
with UCB-based Exploration. arXiv: Learning (2020).

https://doi.org/10.1007/978-3-642-42042-9_5
https://doi.org/10.1007/978-3-642-42042-9_5
https://doi.org/10.1145/3097983.3098184
https://arxiv.org/abs/1503.02531
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf
https://arxiv.org/abs/1003.0146
http://arxiv.org/abs/1003.0146
https://arxiv.org/abs/1908.08936
https://openreview.net/forum?id=SyYe6k-CW

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Contextual multi-armed bandit
	2.2 Knowledge distillation

	3 Distilled deep contextual bandit
	3.1 Algorithm overview
	3.2 Loss function

	4 Experiments
	4.1 Image classification on CIFAR-10
	4.2 Display ads click through rate prediction

	5 Conclusions
	References

