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ABSTRACT
It is well-known that the Controller Area Network (CAN) bus is
insecure, and significant work has been done applying Intrusion
Detection Systems (IDS) to it. However, many approaches to anom-
aly detection for CAN bus IDS have difficulty when attacked signals
do not themselves appear anomalous in content or timing. In this
paper we describe the successful development of an autoencoder
neural network functioning as an anomaly detector operating over
the complex relationships between multiple signals on the CAN
bus to overcome this difficulty. Leveraging a large data set with
≈2.7 billion frames covering 22 days of operation, we encounter
several new difficulties and present associated solutions for train-
ing and evaluating autoencoders processing large and sparse CAN
bus data. We then apply the system to a public data set to provide
reproducibility comparisons.
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1 INTRODUCTION
Large amounts of data flow through CAN buses in vehicles of all
types. Many of these signals carry measurements of physical values;
this information is instrumental for the proper operation of the
vehicle. An attacker can manipulate these signal values to elicit
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undesirable or unexpected responses from control algorithms pro-
cessing them, such as engine control units. Assessed individually,
manipulation of values may be impossible to detect if the mali-
cious values happen to be otherwise valid for the signal in question.
However, given the nature of machinery, many dependencies and
relationships exist between many of these measurements, some
obvious, some subtle. In this paper, we describe the application
of the autoencoder neural network as an anomaly detector able
to extract these subtle relationships and detect otherwise invisi-
ble manipulations with reasonable runtime complexity. There are
several statistical approaches that can be used to detect the rela-
tionships among signals, some simple such as K-nearest neighbors
or complex such as cross-correlation and Pearson correlation anal-
ysis. These techniques require either preprocessing or simplifying
assumptions: disregarding non-stationary behaviors, or remove
some non-random components, such as trends due to seasons or
other factors. The simplification or preprocessing steps may remove
not only unessential nuances, but also important information. We
demonstrate that an autoencoder can detect subtle change in the
relationships without the need to modify or simplify data, represent-
ing big data with relatively small models. We also show how this
approach can still be broadly deployed without requiring significant
individualized training per vehicle [18].

A CAN bus is a peer-to-peer communications network that al-
lows devices to communicate directly with each other using stan-
dard CAN protocols. CAN protocols are message-based protocols
in which all messages are visible to all nodes in the network. In
essence, each packet contains an arbitration field to determine the
message’s priority on the bus, a control field to indicate the length
of data field and some control bits, a data field of eight bytes and
a CRC field that carries the checksum of the message. There is no
message authentication, tamper protection, or sender authentica-
tion in standard CAN protocols [4]. Previous attacks on the CAN
bus have been documented in [5, 26].

2 RELATEDWORKS
In this section, we review the literature on vehicular bus Intrusion
Detection Systems (IDS). IDSs were originally designed to monitor
networked computer systems used by humans [3]. As vehicle con-
trols became more computerized, IDSs were deployed to protect
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in-vehicle networks. Hoppe et al. describe this history [12]. Vehi-
cle bus IDS algorithms can be broadly categorized into four types:
frequency-based, sequence-based, statistics-based, and machine-
learning-based [16].

A frequency-based IDS tests frame arrival rates against prede-
fined characteristics, and abnormal appearance frequencies trigger
alerts. Groza et al. used Bloom filtering to test frame periodicity
based on message identifiers [9]. The Bloom filtering algorithm has
a time/space balance suited to embedded controllers, and effectively
finds frame replay and modification attacks. Taylor et al. [24], Song
et al. [21] and Gmiden et al. [8] also investigated frequency anomaly
detection due to frame injection.

A sequence-based IDS detects attacks by comparing bus traffic
to a set of known-to-be-valid message sequences. Stan et al. [22]
and Ferling et al. [6] proposed methods to detect if frame arrivals
complied with expected timing and sequence constraints. This type
of attack is hard to detect with other algorithms since all packets are
legitimate; only their order or timing is adjusted to serve malicious
purposes. The other method of sequence-based IDS uses language
to define the forbidden message sequences. The language serves as
templates to detect the anomalous traffic [23]. Rieke et al. described
a model-based method to detect unanticipated sequences of events
in order to identify suspicious activities [20].

A statistics-based IDS performs various statistical tests on ob-
served traffic and makes decisions based on the results. Genereux
et al. extracted several timing-related features from messages on
the bus and built histograms of each feature’s distribution. These
baseline histograms are then compared with observed traffic his-
tograms to detect attacks [7]. Tomlinson et al. described in [25] a
statistical technique to detect the timing changes in CAN traffic.
The authors processed data into discrete, non-overlapping windows,
and calculated some metric in each window, using the results for
classification.

A machine-learning-based IDS involves techniques such as neu-
ral networks, support vector machines, and clustering to detect
abnormal traffic. Avatefipour et al. reported using a modified one-
class support vector machine on CAN traffic to quantify the cor-
rectly classified windows in test sets containing attacks in offline
training [1]. Boumiza and Braham used a Hidden Markov Model to
extract features from CAN packets and used them to build a proper
model to detect the malicious packets [2]. Jin et al. used fuzzy rule
interpolation techniques [13] to generate adjustable association
rules during training, and used those during testing. Deep learning
is also used in in-vehicle network security [14, 29].

The technique presented in this paper belongs to the machine-
learning-based group. It uses an autoencoder to learn the relation-
ships between physical signals. The learned relationships become
the baseline for detecting malicious frames. The autoencoder has
been used in vehicle IDS before: Weber et al. used an autoencoder
to model each individual signal in vehicle IDS [27]. However, to the
best of our knowledge, this is the first paper that describes using
an autoencoder to detect anomalous signal correlations in a CAN
bus IDS.

3 DATA DESCRIPTION
We performed our analysis and model construction using a large set
of recorded CAN bus traffic that came from nine different vehicles
of two types (we will call them types A and B). The data set from
each vehicle comprises about 300M frames from several days of
observation. We identified 81 signals common to all nine vehicles
that represent measurements of continuous physical phenomena.
Each signal has a fixed message rate between 1Hz and 50 Hz and
has on the order of 1 million seconds’ worth of data. To achieve a
uniform sampling rate for all signals, we used their mean reported
values in successive one-second windows. This allowed us to assign
a single value for each “whole” second for each signal where at
least one raw sample was present in that second.

4 SIGNAL GROUPS AND AUTOENCODER
TRAINING ALGORITHM

We began by recognizing that particular groups of 𝑛 signals, being
physically or otherwise related to each other, self-organize into a
(potentially, but not necessarily, complex) 𝑛-manifold, when consid-
ered in their n-dimensional space. An autoencoder should be able
to capture that structure in each group during training and detect
if values for a signal are out-of-character in the context of the state
of the group as a whole. "Violations of character" can be attributed
to, among other things, malicious manipulation of signal values.

When identifing signal groupings, we had to deal with the big
data problem in the following atypical manner. During training,
our resources may be considered to be significant, but the ultimate
neural net models have to execute forward propagation on plat-
forms with very limited computational and memory resources, such
as a typical vehicle-embedded processing units. In a way, we had
to "sparse out" the problem down to a very manageable size, and
one of the ways was to limit the size of the neural net used in the
autoencoder, which was directly related to the number of signals
in the groups we were considering.

We experimented with different group sizes, looking for groups
of physical signals that showed reasonably strong internal relation-
ships. Among our 81 available signals, the number of promising
groups dropped precipitously for group sizes greater than three,
while the computational time for both training and forward prop-
agation grew polynomially. Overall signal coverage in the final
group set, coupled with the desire to enable real-time operation of a
trained autoencoder-based IDS on an embedded platform, led us to
define our groups using three signals only. Currently we manually
defined groups. In the near future we will use clustering techniques
to automate that process.

Our time-normalized data, as explained above, has at most one
value per signal for each second; if any signal was not observed
during a particular one-second window, that second was discarded
for all signals. Since groups have three signals, mapping each signal
to an axis in 3D space is a convenient way to visualize inter-signal
relationships. Uniform sampling gave us regular time stamps and
ability to reduce the combined time series of a given 3-signal group
to a collection of (ordered) points in 3D space. Each point reflects
the values of the three signals at one moment in time. In this initial
investigation, the ordered nature of the points was discarded; i.e. we
consider only the instantaneous values of the signals as represented
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Figure 1: 2D projections of 3D patterns.

by the "point cloud," without regard to their evolution in time.
Future work could consider how vehicle state moves from point
to point in the resulting cloud, providing another opportunity to
detect anomalous signal movement.

Two 2D plots of signal relationships are shown in Figure 1. The
tight relationship between signals A and B in panel (a) of the figure
is evident, even though the relationship is obviously non-linear. The
relationship between signals C and D in panel (b) is more complex:
an obvious upper bound on signal D can be seen, the value of that
bound being a function of signal C. Also, some areas under the
upper bound are more densely covered by the observed instances
of (C, D) values than others.

Careful study of the data resulted in the identification of 32
groups of three signals exhibiting non-uniform point clouds. Fifteen
signals could not be assigned to any group, and some signals belong
to more than one group.

After identifying the groups, we proceeded to training of our au-
toencoders. An autoencoder is a specific type of feed-forward neural
network whose task is to replicate its inputs [28]. The structure of
an autoencoder is usually symmetric, with its shape resembling that
of a butterfly, where the outermost layers (the input and the output
layers) have the most nodes and the innermost layer has the fewest
nodes. In our case, the configuration worked out slightly differently:
the number of nodes in the input and output layers corresponds to
the number of analyzed signals, which in our case is three. After
a process described in section 5, we arrived at the non-canonical
shape of 3-50-10-2-10-50-3. Autoencoder is an unsupervised learn-
ing model that is well-known in capturing the latent features of the
datasets. A properly trained autoencoder can capture benign data
distribution and become the base line for anomaly detection.

We used Pytorch [19] to train the autoencoder sensor. We exper-
imented with different activation functions such as ReLU, Tanh,...
and ended up using Sigmoid functions as activation functions [17],
Mean Square Error is the loss function, and Adam is the first-order
gradient-based optimization of the loss function, with learning rate
of 0.001 [15]. The training ends when the loss stops decreasing.

5 CHOOSING NEURAL NET
CONFIGURATION

Autoencoders are symmetric with respect to their center layer,
flaring out from the center, towards the input and output layers.
In our case, the selected input group size dictates that the input
and output layers have three neurons. The center layer must have
fewer neurons than the outermost layers to make the feature space
smaller than the input space. This constraint forces the autoencoder
to find the important features defining the input. The left half

of the network, the encoder, encodes the input into a tight set
of parameters representing the data features; the right half, the
decoder, reconstructs the input using encoded features. The simplest
non-trivial neural net that satisfies these conditions has a center
layer of two neurons and outer layers of three neurons, i.e., a 3-2-3
configuration.

We started with this 3-2-3 configuration and estimated the qual-
ity of the training using several methods, pictured in Figures 2, 3,
and 4. The same set of signals, "group #1," was used in all configura-
tions presented in this section. The group #1 data set baseline has
approximately 1.3 million data points, and all of these data were
used as input to the first three network configurations.

Training was conducted until the average loss per epoch stopped
decreasing. We use the words "loss" and "error" interchangeably
here, because, in our setup, the loss function is the error of recon-
struction, defined as the Euclidean distance between the original
and the reconstructed points in the space of the normalized signals.
The error is expressed in the units of standard deviation from the
mean, since the signals are normalized. As seen in Figure 2 (yellow
curve), the neural net 3-2-3 doesn’t improve beyond error value
0.0048, which is too high for a reliable operation of an autoencoder-
based anomaly detector. In reality, the situation is even worse, as
the next two figures illustrate.

Instead of relying solely on average error, we assess training
quality using the distribution of the error, as displayed in Figure 3.
The histogram is shown in log-scale to address the sharp peaks, dis-
cussed below. The yellow curve shows the error distribution for net

Figure 2: Average error for group #1 data set vs. epoch num-
ber for four neural net configurations.

Figure 3: Reconstruction error in group #1.



DLP-KDD 2020, August 24, 2020, San Diego, California, USA Elena Novikova, Vu Le, Matvey Yutin, Michael Weber, and Cory Anderson

configuration 3-2-3. It is clear that, even though the average error
is 0.0048, many data points have poor reconstruction quality; the
error value rises to 0.16 (𝑙𝑜𝑔10 (0.16) = −0.8) quite often, and goes
as high as 0.5 in a nontrivial number of cases. An error of 0.5 means
that the position of the reconstructed point has no resemblance to
the location of the original point.

Figure 4: Training error visualization for group #1.

The secondmethod for assessing training quality is a plot of input
data vs. output data, as shown in Figure 4. The net’s performance
is presented as a match (or lack thereof) between the input “truth”
(blue) values and the output “predicted” values (orange) for each
3D point in the data set. The 3D space of the normalized signal
values is projected on to two 2D planes, one plane with the scatter
plot of “signal 2” vs “signal 1,” and the other plane with the scatter
plot of “signal 3” vs “signal 1.” Each panel in the figure reflects
the performance of a neural net configuration after the first (top)
or last (bottom three) training epochs. An ideal, perfectly trained
autoencoder will produce exactly the same values at the output as
were provided at the input. In an ideal situation, the output (orange)
points would be exactly on top of the input (blue) points for all
points in the training data set. All of the nets in Figure 4 were
trained on the same group #1 data set.

The state of training after one epoch in Figure 4a is obviously
poor, as it comes out of the first, random, approximation. Figure 4b
shows the best the 3-2-3 net can achieve after training is complete
(when the average error is no longer decreasing). The reconstructed
result (orange) is much thinner in the signal-1-versus-signal-3 plane
than the distribution of truth points (blue). Simultaneously, the
zigzag pattern in the signal-1-versus-signal-2 plane is captured
poorly, with lots of "overspray" around the truth pattern. Obviously,
the neural net 3-2-3 cannot capture the richness of patterns present
in the data — it simply does not have enough parameters.

The next neural net configuration we considered is more com-
plex, with three hidden layers: 3-10-2-10-3. After training, this
neural net yielded the green curves in Figures 2 and 3, and its per-
formance is presented in Figure 4c. The average reconstruction
error is reduced by more than an order of magnitude compared
to the 3-2-3 net. The entire distribution of training error shifted
to the left in Figure 3, and Figure 4c shows the greatly improved
reconstruction precision. This neural net started to recognize the
details of the patterns present in the data of group #1, such as: the
span of the allowed values of signal 3 as a function of signal 1;
the vertical “tail” at the left edge of both 2D projections; and the
sharpness of the zigzag pattern. However, the recognition of these
patterns is far from being complete.

The final neural net configuration has five hidden layers. We
gave the encoder a wide first hidden layer (50 neurons), which
redundantly finds observable features of the input, and a tapering
tail (50-10-2), which extracts the salient features from the high-
dimensional space. We designed the decoder with the reverse of the
encoder’s architecture (2-10-50-3). The total number of parameters
in this neural net is 1465, and, with the number of data points in
the training set (1.3 million), we have about 890 data points per
each parameter that needs to be trained.

After training, the 3-50-10-2-10-50-3 neural net configuration
yielded the blue curves in Figures 2 and 3. Compared to the green
curves of the 3-10-2-10-3 configuration, there is about three-quarters
of one order of magnitude’s worth of improvement in the average er-
ror, and about an order of magnitude shift to the left in the position
of the main dome of the reconstruction error histogram.

However, the dominant feature of the error distribution in Fig-
ure 3 for all three configurations considered so far is the sharp peak
at the left edge of the histogram. Investigation reveals that 88% of
the data points forming this peak come from repetitive data points.
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Specifically, we found the CAN bus recording contained stretches
of time during which none of the signals in certain groups changed
significantly, resulting in several very dense clusters of data points
in the 3D space of normalized signal values. Training the neural
net with all of these overlapping points results in over training for
these clusters, wasting neural net parameters that overemphasize
these, and under-representing the other, no less important parts of
the manifolds and sub-volumes.

To solve this problem, we limit the number of duplicate data
points present in the training set through a "bin and cut". The signals
on the CAN bus used in this study are of two precisions, 8-bit and
16-bit. We bin the normalized axis of the 8-bit signals into 256 bins,
16-bit ones into 1000 bins. These bin sizes, we determined, capture
and tame the sets of duplicate data that were causing the over-
training. The binning results in a 3D grid, and we accept no more
than 100 points from each cell, ”cutting away” the extras. Applying
this filtering to the group #1 data set results in a one-order-of-
magnitude reduction in the number of data points to about 150,000
points available for training. Even after this drastic reduction, the
data-point-to-net-coefficient ratio is still greater than 100.

The results of training the 3-50-10-2-10-50-3 neural net configu-
ration with the bin-and-cut reduction of data are represented by red
curves in Figures 2 and 3, and by the panel (d) in Figure 4. Compar-
ison of the red and blue histograms in Figure 3 shows the red curve
dome moving significantly to the left of the blue curve’s dome,
and the sharp peak of the blue curve is gone from the red curve.
Filtering the data before training (making the data properly sparse)
allows the autoencoder to capture more of the data set features that
need to be learned instead of being overly focused on the repetitive
data.

Interestingly, the final average training error is higher for the
bin-and-cut data set (red curve) than for the unfiltered data set
(blue curve) in Figure 2. The error among the large number of
over-represented data points in the unfiltered data set is very small
(confirmed with Figure 3), which reduced the average error. This
case clearly demonstrates how dangerous it is to rely on a sin-
gle metric when estimating the precision and quality of a specific
neural net configuration. Close inspection of details may result in
significant improvement of the final product.

The reconstruction precision for the neural net with five hidden
layers trained on filtered data can be seen in Figure 4d. This config-
uration results in a close match of the reconstructed points with
their original input points.

6 VERIFICATION OF RESULTS
The result of training a neural net on a certain data set is a model,
where all 1465 coefficients of the neural net 3-50-10-2-10-50-3 are
defined. This model needs to be verified, i.e., applied to a new data
set that was not used in any form during training. Due to the large
volume of data available, we were able to apply the model trained on
our “base” vehicle to the data from the CAN buses of other vehicles.
For the purposes of verification of our training and bin-and-cut
algorithms, we performed these comparisons only among vehicles
of the same type, for reasons discussed in the next section.

The verification results of the signal group #1 model are shown
in Figure 5. Again, we use the distribution of reconstruction errors

Figure 5: Verification of reconstruction, group #1.

Figure 6: Application of the model trained on the base vehi-
cle, to other vehicles, for several signal groups.

for a clearer picture of the model’s performance. Data sets from two
additional vehicles show an almost perfect match to the model’s
treatment of the training data set from the base vehicle.

It is important to note that this analysis allows us to conclude
that models trained on one vehicle can be used on another vehicle,
without re-training, as long as the characteristics of the vehicles are
similar enough with respect to the signals assigned to a particular
group.

Let us define "data X" as "the data from vehicle X." We further
define “model X" as "the model trained on data X," and "model X’s
response to data X" (i.e., to the very data on which it was trained)
as the "self-response." The self-response, as well as the response of
model X to data Y, can be presented as a histogram (as in Figures 3
and 5), or as a scatter plot of 2D projections of the original and
reconstructed points (as in Figure 4, and later in Figure 9). The
self-response for six different models from vehicle #1 (the “base”)
are depicted in Figure 6, each with an associated plot of that model’s
response to the data of some other vehicle. The models of these
six groups display different behavior, from group to group, but the
response of the model to data from two different vehicles match
surprisingly well. For anomaly detection purposes, it is especially
important to check the high-error-value-tail part of the histogram
for alignment, since this is the tail along which the cutoff between
benign (acceptable) behavior and anomalous behavior is defined.
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Figure 7: Model for vehicle #1, group #6: self-response and
response to data from other vehicles.

Figure 8: Response of the combined model to the data of ev-
ery vehicle, one at a time (group #6).

7 THE MODEL FOR ALL VEHICLES
Not all signal groups behave as well as those shown in Figure 6; for
some groups, model X’s response to data Y is very different than its
self-response. One such example is group #6, as shown in Figure 7.

Not only do the base model’s responses to the data of various
other vehicles not match, but we also see a clear separation of
response histograms into two groups, one having responses resem-
bling the self-response of vehicle #1, and the other group that is
very different from that self-response. This separation corresponds
to physical characteristic differences between the two vehicle types.
When the systems are so different, can we still come up with a
model that will work on all vehicles of both types, with the goal of
reducing logistics and possible mistakes “in the field?” The answer
is “yes, we can.”

Consider a combined data set from all vehicles, normalized,
binned, and cut as described above. We trained the 3-50-10-2-10-
50-3 neural net using this combined data set. The patterns present
in the data of each separate vehicle will be preserved, and will only
be amended by the data from the rest of the vehicles. Overall, the
combined patterns can be expected to be more complex, and the
neural net may lose precision that the crisper patterns represent
in each vehicle separately. However, the neural net still recognizes
the combined pattern.

We define the model trained on the data coming from all ve-
hicles as a “combined model.” The combined model’s response to
each vehicle’s data individually is shown in Figure 8. Comparing
with Figure 7 clearly shows how the model’s response to the two

types of vehicles (type A and type B) has changed, becoming more
cohesive and uniform. However, the response is not ideal, probably
indicating that a more complex neural net should be used to learn
a richer feature set of the combined data. Another indicator of the
need to increase the complexity of the neural net is the worsening
(shift to the right) of the position of the peak in responses of the
combined model (Figure 8), when compared to the self-response of
the vehicle #1 model (base vehicle in Figure 7). The loss of precision
is approximately half an order of magnitude.

More details of the combined model’s performance can be seen
in Figure 9, where the response from two models (model of vehicle
#1, and the combined model) is shown as a scatter plot projection
onto one of the 2D planes.

The self-response of the vehicle #1 model is shown in panel (a).
The model is well-trained; the positions of the reconstructed (or-
ange) points are very close to the positions of the original (blue)
points. Applying vehicle #9 data to the vehicle #1 model results in
a poor match, seen in panel (b). Vehicle #9’s input data points are
shown in green in panel (b); these points have a different structure
than vehicle #1’s input data points. It is not surprising that the neu-
ral net trained to see the patterns of blue dots from panel (a) cannot
recognize the green dots from panel (b), and in fact, is treating them
as anomalous, giving very large errors of reconstruction.

When the data sets from many vehicles are combined, the pat-
terns of type A vehicles (e.g., vehicle #1) are combined with the

Figure 9: Training error visualization, group #6.



Autoencoder Anomaly Detection on Large CAN Bus Data DLP-KDD 2020, August 24, 2020, San Diego, California, USA

patterns of type B vehicles (e.g., vehicle #9). The combined model
can then recognize patterns from both types of vehicles and can
deal with variations of the patterns inside one vehicle type. The
combined model does have a slightly poorer fit to the data of a
specific vehicle when compared to the self-response of that ve-
hicle’s model. Compare panels (a) and (c) in Figure 9: the points
reconstructed in panel (c) have larger error than in panel (a). This
is the trade off required for a combined model to respond well a
broader range of data from any specific vehicle within a fixed net
configuration. The response of the combined model to the vehicle
#9 data is now reasonable (Figure 9d), while the response of the
vehicle #1 model to the same data was very poor (Figure 9b).

8 USE CASE
We selected a 100-second segment of input data from our propri-
etary data set, and created a "disturbance" by halving the values of
purple signal. We then feed the modified data set to our anomaly
detector built around the autoencoder and observe the resulting
raw and filtered detections. The results are presented in Figure 10.

When comparing the original data (Figure 10a) to the modified
data (Figure 10b), it is clearly difficult to detect the disturbance with-
out relating the purple signal to the other signals from the groups
that it belongs to. The modified purple signal retains its original
range and statistical characteristics; however, the autoencoder eas-
ily detects this anomaly because it produces a large reconstruction
error in excess of a reasonable threshold.

The warnings raised for various groups are shown in Figure 10c.
The location, height, and color of each vertical bar indicates the
anomaly time, severity (degree of deviation from normal), and

Figure 10: Performance of autoencoder during a case study.

source group respectively. The modified purple signal belongs to
several groups, and the warnings for these groups inside the dis-
turbance time window are the legitimate ones. However, a total of
12 groups generated warnings, many of them outside of the distur-
bance time window. To prevent these warnings from being reported
as false positives, we employ a filter algorithm which requires the
warnings to be continuous, to have significant average severity,
and to have a large absolute severity value at least briefly. Warning
sequences meeting these criteria are eligible to be promoted to
alarms.

The result of this filtering is shown in Figure 10d. Only warnings
from groups #16 and #23 pass and are promoted to alarms; the other
weak, brief warnings are filtered out.

9 REPRODUCIBILITY WITH SYNCAN DATA
As mentioned in [10], publishing the real CAN traffic used in this
paper for reproducibility is impossible due to intellectual property
restrictions. To adapt to this situation, we resort to the published
data set SynCAN that Hanselmann et al. [11] gracefully produced
and published in github.

The data consists of a training data set and six test data sets.
The data is represented in CSV format, with the following columns:
Label, Timestamp (in milliseconds), ID, Signal-1, and three optional
columns (Signal-2, Signal-3, Signal-4). Labels 0 and 1 are for benign
and anomalous data entries, respectively, ID is the CAN packet
ID, each packet has at least one signal, with the maximum of four.
There are a total of twenty different signals (label types) in the
records.

The training data set has four CSV files, each contains roughly
seven million benign packets, accounting for about 13 hours of
operation. The test data sets have the same format, with some
packets labeled "1," meaning "anomalous."We used three test sets for
verification of the performance of our autoencoder as an anomaly
detector: "test_plateau," "test_playback" and "test_continuous." Each
of these sets contains multiple (≈100) attacks that last for several
seconds.

The SynCAN data set has sampling frequencies of 22.2Hz, 33.3Hz
or 66.6Hz. We scaled the time axis to have 2, 3, or 6 samples per one
"time tick," by first converting time from milliseconds to seconds,
and then dividing by 0.09. The sampling rate change does not
affect the outcome of training and/or testing, but allows for easier
handling of data. All figures below that include a time axis use
these "time ticks" as the unit. We divided the set of 20 signals into
11 groups, as seen in Table 1.

Each group contains three signals that are related to each other
in some way; we used our visual tools to find related signals. We
trained our SynCAN autoencoders and prepared the models to
be used in attack detection. Our preliminary testing using self-
response histograms (similar to the blue curve in Figure 5) showed
that our SynCAN-models for 11 groups behave as expected, and
we proceeded to work with the three testing sets that contain
attacks. For the convenience of representation, we shifted our (al-
ready stretched) time scale in each of the "attack" files so that the
beginning of each file corresponds to time tick "zero."

We first considered "plateau" attacks. During "plateau" attack,
one of the signals becomes constant for the duration of the attack,
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Table 1: List of groups and their signal components.

Group # Signal 1 Signal 2 Signal 3

1 ID1-Sig1 ID2-Sig2 ID5-Sig1
2 ID1-Sig1 ID2-Sig2 IDA-Sig4
3 ID2-Sig1 ID3-Sig2 ID7-Sig1
4 ID2-Sig3 ID8-Sig1 ID7-Sig1
5 ID2-Sig2 ID5-Sig1 IDA-Sig4
6 ID5-Sig2 ID6-Sig1 IDA-Sig3
7 ID9-Sig1 IDA-Sig1 IDA-Sig4
8 ID1-Sig1 ID4-Sig1 ID5-Sig1
9 ID1-Sig2 ID3-Sig1 ID7-Sig2
10 IDA-Sig2 ID6-Sig2 ID7-Sig2
11 ID1-Sig2 ID6-Sig2 ID7-Sig2

Figure 11: A detection of a SynCAN "plateau" attack.

and the other two remain "live." When it happens, chances are good
that the combined values of the three signals will go outside of the
relationship the autoencoder is trained to accept as normal for this
specific CAN bus.

A good example of such a detection is shown in Figure 11. The
value of the signal under attack, ID1-Sig1, "jumps" down between
time ticks ≈7020 and ≈7070 (Figure 11a). This type of attack cannot
be detected based on range, since the "misleading" value is well
within the usual range of the signal, as can be seen in Figure 11a. As
shown in Figure 11b, the autoencoders for groups #1 and #2 show
detections all the way through the time frame of the attack: the
height of the colored vertical bars in Figure 11b depicts the strength
of the detection.

The overall statistics of our detection for all "plateau" attacks can
be seen in Figure 12, where all attacks and detections are shown
against the time axis in "ticks." The attacks are represented as black
bars descending from the time axis, and the color of the detections
shows the group(s) that caught them. Our system detected 115 out
of 116 attacks.

Our next case is the "playback" attacks. A signal is "hijacked" and
its value is changed over the time frame of the attack. The value is
changed by replacing a portion of the time series by another portion
of the same time series, taken from a bit earlier. An example of such
an attack, and of its detection, is presented in Figure 13.

It can be seen that the values of signal ID9-Sig1 are overridden
between time ticks ≈ 452 and ≈ 512. The values for this override

Figure 12: Statistics of detection of "plateau" attacks.

Figure 13: A detection of a SynCAN "replay" attack.

Figure 14: Statistics of detection of "playback" attacks.

were taken from the time span immediately preceding the attacked
time span, as can be seen in Figure 13a. The signal under attack
belongs to group #7, and the autoencoder easily detected this replay.
As described above, our application of the autoencoder as an anom-
aly detector is based on the fact that it can recognize the points in
time when the signals do not relate to each other in the same way
as they do in the training data. Close inspection of the detection
strength (the height of the green bars in Figure 13b) shows that it is
proportional to the magnitude of the substituted value’s departure
from the original value.

The signal IDA-Sig1, which is also a member of group #7, is
following the signal ID9-Sig1 - in benign data. Comparison of these
two signals provide an excellent measure of the discrepancy be-
tween the original values of ID9-Sig1 and the "replay" values. Notice
that the autoencoder doesn’t have difficulties typical for the meth-
ods that work with one signal at a time: a replay attack is very hard
to detect using methods based on properties of only one signal,
because the substituted values come with the properties that look
benign to a detector that doesn’t relate those values to the values
of the other signals on the CAN bus. The quality of the detection
of all "playback" attacks is shown in Figure 14: our system detected
89 out of 93 attacks.

The "continuous" attack is shown in Figure 15a). Two closely
related signals from this group are shown, and it is clear that IDA-
Sig4 is attacked around time tick 17,695, where its value is replaced
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Figure 15: A detection of a SynCAN "continuous" attack.

Figure 16: Statistics of detection of "continuous" attacks.

by a progressively different value (a continuous downward ramp is
evident). The height of the brown bars in Figure 15b is proportional
to the significance of the detection raised by autoencoder of the
group #6. The stronger the discrepancy between the original value
and the substituted value, the easier it is to detect the attack.

The statistics of our detection of "continuous" attacks is presented
in Figure 16: our system detected 91 out of 96 attacks.

10 CONCLUSIONS
In this paper we described the process and results of developing
an autoencoder-based anomaly detection capability backed by a
uniquely large (≈2.7 billion frames) CAN bus data set, along with
some insights enabled by such data. We further presented detailed
results of anomaly detection using our autoencoder. We illustrated
how to keep data unbiased when handling sparse data set. Impor-
tantly, the constructed model can be reused for similar types of
vehicles without losing precision. However, if we can accept a bit
lower precision then we can build a model that can fit all available
types of vehicles. That capability is valuable in a sense that we can
project our model to even unseen vehicles.
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