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ABSTRACT
Ranking is the central part of plenty information retrieval prob-
lems. Existing learning to rank methods mostly employ one of
the following learning methodologies: pointwise, pairwise and list-
wise learning. In this paper, we conduct analysis to demonstrate
that these learning methodologies perform well in different sce-
narios respectively, according to corresponding evaluation metrics.
Theoretically, all these learning methods aim at capturing relation
between query context and candidate documents, the knowledge
they extracted should be able to benefit each other and further im-
prove the performance. Follow this idea, we propose multi-objective
learning to combine their strengths. We extend existing deep rank-
ing models into multi-prediction networks, and conduct training
using both pointwise and listwise objectives simultaneously. Exper-
iments using real search logs indicate that we can further improve
the performance of existing models according to both global-level
and query-level evaluations using our learning methodology.
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1 INTRODUCTION
Ranking is one of the fundamental problems in information retrieval.
The goal is to rank the candidate documents/items according to
their importance/relevance/preference towards the query context,
thus provide the useful information for the users [7]. Learning to
rank has been successfully applied in various scenarios including
search engines, recommender systems, expert finding, etc.

Existing learning to rank methods can be categorized into the
following three types: pointwise, pairwise and listwise learning.
Pointwise learning methods tackle the ranking problem using re-
gression models, which estimates the likelihood of each data in-
stance being a positive one, e.g. estimating the user’s click through
rate. Researchers in this direction focus on document/item/user
understanding and model structures. As deep learning thrives, re-
searchers propose deep ranking models such as DeepFM [4], PNN
[8], DSSM [6] etc. Despite their success, pointwise learning only
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considers candidate documents independently and does not explic-
itly capture the relevant ranking information among them.

Pairwise learning is then proposed to capture the comparison
between documents. The model is trained to estimate whether we
should rank document i higher than document j under given context
c . The representative works include Ranking SVM [3], RankNet
[1] etc. The computational cost of pairwise training is rather large
as it requires document pairs for training. Another drawback is
that such models consider all mis-ranked pairs equally, while top
documents in final ranking obviously draw more attention.

To tackle the aforementioned limitations, researchers further
propose listwise learning. LambdaMart [2] is one of the represen-
tative works in this direction, which speeds up the training by
aggregating pairwise losses within each query and also achieves
direct optimization for listwise metrics such as NDCG (normalized
discounted cumulative gain). As listwise methods can be considered
as an upgrade for pairwise methods with larger model capability,
we focus on pointwise and listwise learning in this paper.

Different learning methodologies have distinctive advantages
and limitations. Pointwise learning considers each training in-
stance (context-document pair, a.k.a. impression) independently
and equally, hence reaches for global optimization. Listwise learn-
ing on the other hand, is great at optimizing top-k ranking but does
not provide point estimation (e.g. ctr estimation, which could be
extremely useful for scenarios such as computational ads). Also,
they may neglect long tail part of ranking when focusing on top-k
due to the nature of listwise metrics.

We conduct detailed experimental analysis to gain further in-
sight of different learning methods. Experiments indicate that point-
wise learning performs better according to global-level metric AUC,
while listwise methods perform better according to query-level met-
ric NDCG. Online experiments also conclude that listwise method
achieves higher click through rate for top slots while pointwise
method performs better for the rest. Another interesting finding
is that models trained with different methods can convert to each
other with only few training iterations, indicating that both learn-
ing methods extract similar lower-level general knowledge while
having distinctive upper-level prediction-related knowledge.

Inspired by these findings, we attempt to combine the strength
of both pointwise and listwise learning by proposing a novel deep
multi-objective learning methodology. We extend existing deep
ranking models by introducing two parallel prediction networks
after hidden networks to serve pointwise and listwise learning re-
spectively. Therefore, both objectives can share lower-level general
knowledge by simultaneous updating the shared embeddings and
hidden networks, while maintaining distinctive prediction proper-
ties in parallel prediction networks. Experiments using large-scale
search log indicate that multi-objective learning can further im-
prove the performance of existing deep ranking models according
to both global-level and query-level evaluations.
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2 POINTWISE VS LISTWISE
In general, the goal of learning to rank is to train a predictive
model that automatically ranks the candidate documents effec-
tively according to the given request context, e.g. in document
search we rank the candidates according to their relevance towards
the query keywords. Specifically, we train the model to score each
document according to the given request context to capture the
relevance/importance/preferences, given features regarding candi-
date document i and request context c as input. Formally, we have
ŷic =M(Fic ), where F indicates the feature representation and
M represents the model. Then, we rank the candidates according
to the predicted scores ŷic .

The learning is carried out by fitting the modelM with observed
dataD = {yic ,Fic } by minimizing a pre-defined loss functionL(·),
where yic is the ground truth indicator (e.g. user click).

M(D) = argmin
M

L ({yic , ŷic =M(Fic )}) (1)

The loss function L(·) is defined in general form, where it takes
the prediction and the ground truth for all instances as input. In
practice, we always break it down to pointwise or listwise loss
functions depending on use scenarios, leading to pointwise and
listwise learning respectively.

Pointwise Learning aims at estimating the absolute correlation
of each document-context pair, e.g. ctr estimation. Hence, in these
works we consider each training instance individually and equally,
and break the general loss function down to pointwise loss:

L ({yic , ŷic ,Fic }) =
∑
ic
ℓpoint (yic , ŷic ) (2)

in which log loss and square error are the two widely used functions
for pointwise loss function ℓpoint .

Listwise Learning focus on optimizing the ranking directly
and breaks the general loss function down to listwise loss function:

L ({yic , ŷic ,Fic }) =
∑
c
ℓl ist

(
{yic , ŷjc }

)
(3)

A typical choice for listwise loss function ℓl ist is NDCG, which
leads to LambdaMART [2] and its variations.

The fundamental difference between pointwise learning and
listwise learning is that the former considers each training instance
equally, while the latter emphasis on list, especially top ranked
documents within each query. Therefore, they may out-perform
each other when applied to different scenarios. For scenarios where
global optimization is needed (e.g. display ads), we prefer pointwise
learning. In these cases, AUC and RMSE are normally used for
global-level evaluation. On the other hand, when focusing on top-k
optimization we may prefer listwise learning and employ NDCG
or MAP for evaluation.

To analyse the influence of learning methodologies, we train
same model structure using both pointwise and listwise learning.
Unless indicated otherwise, we use DeepFM [4] as the representa-
tive model structure for experiments in this paper. We use restau-
rant search logs from Meituan-Dianping, one of the most popular
platforms for restaurant review and food delivery in China. Results
showed in Fig. 1 indicate that pointwise learning achieves better per-
formance according to global-level metrics AUC and RMSE while

Figure 1: Pointwise Learning vs Listwise Learning

Table 1: CTR at Different Positions, Pointwise vs Listwise

Position 1-3 4-6 7-9 10-12 13-15 16-18 19-21
Pointwise 18.49% 9.20% 7.49% 6.89% 5.71%5.71%5.71% 5.26%5.26%5.26% 5.46%5.46%5.46%
Listwise 18.66%18.66%18.66% 9.25%9.25%9.25% 7.51%7.51%7.51% 6.90%6.90%6.90% 5.70% 5.20% 5.31%
Relative +0.90% +0.55% +0.32% +0.19% -0.11% -1.21% -2.86%

listwise learning gives better results according to query-level metric
NDCG and MAP.

We also conduct online A/B experiment to show how user be-
haviour differs when facing models trained with different learning
methods. We show the results in Table. 1, where we average the
click through rate by every 3 display slots to eliminate the influence
of display advertisements. Results indicated that listwise learning
achieves better performance on top slots (roughly top 10 positions),
while pointwise learning performs better on the rest.

3 DEEP MULTI-OBJECTIVE LEARNING
Previous analysis indicates that pointwise and listwise learning
have distinctive advantages for global-level and query-level op-
timization respectively, indicating that they can extract different
but useful knowledge from training instances. This inspired us to
combine their strengths by using the integrated knowledge.

Specifically, we aim at training the target model using both point-
wise and listwise learning, leading to a multi-objective learning
methodology. The rationale behind is that both learning methods
aim at capturing the relation between query context and candidate
documents, i.e. their objectives align with each other. Theoreti-
cally speaking, a perfect model should be optimal according to both
global-level and query-level evaluations. Hence, optimizing on both
dimensions together may close the gap towards such perfect model.

There exist a few research works that follow similar idea and
intuition. In early years, Sculley first stated that ranking and regres-
sion learning has distinctive advantage and limitations respectively,
and combine them can give ‘best of both’ performance [9]. Recently
Hu et al. also point out that using only point-wise, row-wise or
column-wise training alone can be problematic, and extend pair-
wise learning by combining different types of training samples [5].
Nevertheless, these works achieve multi-objective learning follow
simple idea that randomly choose the objective in each training step,
which has no theoretical support hence may be further improved.

3.1 Iterative Multi-Objective Learning
A straight-forward methods to conduct multi-objective learning is
to apply pointwise and listwise learning iteratively, as demonstrated
in Fig. 2 (C). We depict the training curves of pointwise, listwise
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Figure 2: Learning Methodologies: (A) Pointwise Learning,
(B) Listwise Learning, (C) IterativeMulti-Objective Learning,
(D) Multi-Objective Learning with Multi-Predict Networks

Figure 3: Training Curve of Iterative Multi-Obj Learning

and iterative multi-objective learning in Fig. 3, in which we plot
according to both global-level and query-level evaluations.

Although iterative multi-objective learning does not provide sig-
nificant performance gain, we do get some interesting findings from
this experiment. From the training curve we may notice that when
we iteratively train the model, its behaviour oscillates between the
two original learning methods. Each time when a new iteration
begins, the model’s training curve quickly converges to the cor-
responding original training curve. This phenomenon indicates
that lower-level general knowledge extracted using both learning
methods are mostly consistent, while the upper-level knowledge,
which can be quickly learnt, differs with each other. The reason
behind could be that both learning methods share similar docu-
ment/context understanding and feature representations in embed-
dings and lower-level layers, and differs in upper-level layer as the
two objectives may lay distinctive emphasis on the predictions.

3.2 Multi-Prediction for Multi-Objective
Guided by previous findings, we prefer if both pointwise and list-
wise learning can contribute to the training of lower-level general
knowledge while maintaining different upper-level knowledge to
preserve distinctive prediction properties. Hence, we extend exist-
ing deep ranking models into multi-prediction networks.

Existing ranking models in deep learning family (e.g. DeepFM,
PNN, DSSM, etc.) can be partitioned into input network (embedding
representations), hidden network and prediction network. As we
do not focus on model structures, we skip the details here.

We extend existing models by duplicating their prediction net-
work and then train each prediction node using one of pointwise
learning and listwise objectives respectively. We refer these two
prediction node by Multi-Obj (P) and Multi-Obj (L) for pointwise

and listwise respectively. We demonstrate the model structure as
well as the training methodology in Fig. 2 (D). Within each iteration,
we batch the training instances by two strategies, one organized by
query to serve listwise learning and the other by random shuffle for
pointwise learning. Then we put these training batches together to
form the training set. Note that each training instance will appears
twice. For each training step, we choose one training-batch from
the candidates and train through corresponding network.

Following this design, the lower-level networks (input and hid-
den networks) can absorb training information from both opti-
mizers, capturing the general shareable knowledge such as docu-
ment or context understanding, feature representations etc. In the
meanwhile, upper-level parallel prediction networks may focus on
modelling the scoring function according to different objectives,
keeping individual prediction properties. Ideally, the shared knowl-
edge in lower-level networks can contribute to the improvement of
both prediction networks hence perform better according to both
global-level and query-level evaluations.

4 EXPERIMENTS
Dataset. We conduct experiments using restaurant search logs
from Meituan-Dianping, one of the most popular platforms for
restaurant review and food delivery in China. We use search log of
10 consecutive days in one city for training, and the following day
for evaluation. In total we have 23,427,546 instances (impressions)
from 1,890,762 queries for training and 1,924,915 instances from
163,657 queries for evaluation. Each instance is represented by 50-
dimension feature vector, regarding user, shop, query, statistics (e.g.
ctr, review count) etc.

Experimental Settings. As we do not have additional require-
ment on the ranking models besides it belongs to deep family, with
out loss of generality we conduct experiments using DeepFM [4]
and PNN [8] as representative models. For all evaluated models,
we use embeddings with 12 dimensions, hidden network with 2
layers of 1,024 neurons, and prediction network with 1 layer of
1,024 neurons. Logarithmic loss is used for pointwise learning and
NDCG is used for listwise learning.

Evaluating Multi-Objective Learning.We first use different
learning methodologies to train DeepFM and PNN, and present the
results in Table. 2. Results indicate that pointwise learning achieves
better performance according to global-level metric AUC while
listwise learning performs better according to query-level metric
NDCG. For multi-objective learning, we evaluate according to both
parallel predictions, whereMulti-Obj (P) andMulti-Obj (L) indicates
the one serving pointwise and listwise objective respectively.

We first discuss according to experiment using DeepFM. The
best performance according to global-level metric AUC is provided
by Multi-Obj (P), with 0.18% relative improvement compared to
traditional pointwise learning. The improvement is considered sig-
nificant in ranking scenario, especially when considering we only
make alternation in learning methodology without adding addi-
tional model structures nor feature representations. And for query-
level metric NDCG, Multi-Obj (P) achieves 0.16% relative improve-
ment comparing to traditional listwise learning. This indicates our
multi-objective learning with multi-predict network can success-
fully share knowledge between pointwise and listwise objectives
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Table 2: Experimental Results for Multi-Objective Learning

DeepFM PNN
AUC NDCG AUC NDCG

Pointwise 0.750006 0.724719 0.750656 0.724082
Listwise 0.669403 0.730435 0.670266 0.730732

Multi-Obj (P) 0.7513660.7513660.751366 0.724973 0.7511670.7511670.751167 0.724537
Multi-Obj (L) 0.725542 0.7315750.7315750.731575 0.725917 0.7313080.7313080.731308

Figure 4: Training Curve of Different Training Methods

thus improving model performance according to both evaluation
metrics. Experiments using PNN also present similar conclusion,
indicating that the improvement can benefit ranking models from
deep learning family in general.

By comparingMulti-Obj (L) with listwise learning, wemay notice
that our model achieves better performance according to both eval-
uation metrics. The relative improvement is rather significant for
global-level evaluation AUC. The reason is that traditional listwise
learning do not leverage global-level information while Multi-Obj
(L) can acquire such knowledge via knowledge sharing in hidden
and input networks. Hence, we alleviate the disadvantage of tradi-
tional listwise learning.

Training Curve. We depict training curve of multi-objective
learning in Fig. 4. The first two plots correspond to AUC and NDCG
versus training iterations respectively, and in third plot we plot 2-D
training curve with x-axis representing AUC and y-axis represent-
ing NDCG. The curves indicate that using multi-objective learning
achieves similar convergence rate with traditional methods hence
does not lead to computational cost concerns.

Varying Model Capacities. We vary the embedding dimen-
sions and present the results in Table 3. Result indicates that per-
formance gain enlarges when dimension is over 12, indicating that
multi-objective learning requires slightly larger model capacity as
the amount of knowledge we extracted increases.

Balancing Parallel Prediction Networks. Previous experi-
ments are conducted by feeding same amount of training data
to both prediction networks, hence pointwise and listwise learning
have equal influence. Now we break the balance by feeding more
training samples to one of the optimizers (e.g. have each instance
go through pointwise optimizer twice and listwise optimizer once).
The results showed in Table 4 indicate that multi-objective learning

Table 3: Varying Embedding Dimension (AUC)

Dimension 6 12 24
Pointwise 0.749123 0.750006 0.750068

Multi-Obj (P) 0.749997 0.751366 0.751413
Relative +0.11% +0.18% +0.18%

Table 4: Varying Training Ratio Between Optimizers

Point vs List 2 : 1 1 : 1 1 : 2
AUC 0.751439 0.751366 0.751131
NDCG 0.731364 0.731575 0.731635

is rather robust to such adjustment. Increase the ratio towards point-
wise learning leads to slight improvement over global-level metric
(AUC) and decline over query-level metric (NDCG), and vice versa.
This also supports the finding that lower-level knowledge extracted
using both optimizers are consistent, hence reducing training ratio
for one optimizer does not lead to severe model vibration.

5 CONCLUSION & FUTUREWORKS
In this paper, we first conduct experimental analysis on pointwise
and listwise learning to examine their individual strength and prop-
erties. Results indicate that they have distinctive advantage ac-
cording to global-level and query-level evaluations respectively.
We also notice that knowledge they extract only differ on upper-
level prediction-related knowledge, while consistent in lower-level
general knowledges. Based on these findings, we propose multi-
objective learning methodology for deep ranking models to com-
bine the power of both pointwise and listwise learnings. We extend
existing deep models to multi-prediction networks to better serve
the multi-objective learning. Experiments indicate that our learning
methodology can successfully improve the performance of existing
models according to both global-level and query-level evaluations,
which close the gap towards general ranking optimization. For fu-
ture works, we may consider integrating the parallel prediction
networks to achieve united prediction for general scenario.
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