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ABSTRACT
Time-series anomaly detection is a popular topic in both academia
and industrial fields. Many companies need to monitor thousands
of temporal signals for their applications and services and require
instant feedback and alerts for potential incidents in time. The task
is challenging because of the complex characteristics of time-series,
which are messy, stochastic, and often without proper labels. This
prohibits training supervised models because of lack of labels and
a single model hardly fits different time series. In this paper, we
propose a solution to address these issues. We present an automated
model selection framework to automatically find the most suitable
detection model with proper parameters for the incoming data. The
model selection layer is extensible as it can be updated without too
much effort when a new detector is available to the service. Finally,
we incorporate a customized tuning algorithm to flexibly filter
anomalies to meet customers’ criteria. Experiments on real-world
datasets show the effectiveness of our solution.
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1 INTRODUCTION
Modern corporations need to monitor millions of temporal signals
to make sure their business are working healthily. Any aberrant
signal may indicate troubles which could cause significant revenue
loss. In-time detection of such anomalies is necessary and could
trigger prompt troubleshooting as soon as possible to avoid such
loss. For example, business units of a company can rely on the de-
tection system to alert any drops in sales so that they can come up
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with solutions in time. From the perspective of data science, time-
series anomaly detection aims to discover unexpected events or rare
items in data. The task requires to label any data point that is differ-
ent from the majority of data points. For this purpose,an anomaly
detector helps customers monitor the time-series continuously.

Many challenges could be foreseen in designing such an indus-
trial service. First, supervised models may be inefficient for this
task due to lack of labels and continuous changing of data dis-
tribution. Since customers always have substantial time-series to
be monitored, providing anomaly labels could be ineffective. The
data distribution may change from time to time so the pretrained
models may not fit newly coming data. Second, the patterns of
time-series are very complex as shown in Figure 3. The anomaly
detector is expected to work well on all kinds of time-series, which
requires the model to have good generalization capability. Previous
methods may only achieve good performance on a specifit type of
data but fail on others. For example, Holt winters [1] can detect
anomalies accurately on seasonal signals but performs poorly on
non-seasonal data. Third, customers have different tolerance on
anomalies. Whether a data point is anomaly depends on customers’
strategy and business concerns. Therefore, they need an intuitive
and effective way to customize the anomaly detection results.

At Microsoft, it is a common need to monitor business metrics
and act quickly to address the issue if there is anything outside of the
normal pattern. To tackle the problem, we build a scalable system
with the ability to monitor minute-level time-series from various
data sources. Automated diagnostic insights are provided to assist
users to resolve their issues efficiently. The service has been used
by more than 200 product teams within Microsoft, across M365,
Bing and Azure, with more than 4 million time-series ingested
and monitored continuously. As shown in Figure 1, users create
multi-dimension datafeed to collect their service metrics, including
DevOps, Service Quality and User Activity. The monitor systemwill
detect anomalies for each metrics and users can filter the detection
result with a single parameter named Sensitivity.

In this work, we present our solution on combining multiple
time-series anomaly detection models. We design an automated
model selection pipeline for time-series anomaly detection which
selects the most suitable detection model based on the features
of input time-series. All the candidate models are unsupervised
which will be discussed in section 2.2. Our pipeline is also equipped
with a parameter estimator which could compute the best hyper-
parameters for the selected anomaly detector. Finally, we provide
a tuning interface to allow customized interpretation of anomaly
results. Experiments have shown the effectiveness of our design
and the pipeline can be integrated into customers’ own platforms
and business units.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Application Overview

Figure 2: Pipeline

2 METHODOLOGY
In this section, we discuss about the key components in our anomaly
detector. An overview of the whole pipeline is described in Sec-
tion 2.1. Then we introduce how we leverage Spectral Residual in
time-series anomaly detection in Section 2.2, methodology of build-
ing pre-trained anomaly detection model selector in Section 2.3 and
the ability of customized tuning in Section 2.4.

2.1 Overview
The whole pipeline of our service is presented in Figure 2. The
incoming series is first processed by a set of transformations and
feature extractors. Then in the automated model selection phase,
Model Selector takes the extracted features as input and outputs
the anomaly detection model that best fits the input data. Each
anomaly detection model is associated with a Parameter Estimator,
which is used to compute related parameters. Next, our service
uses the selected model and its corresponding parameters to detect
anomalies of the input data and obtains a preliminary anomaly
detection result. Lastly, tuning parameters are applied to obtain a
customized anomaly detection result.

Feature Extraction Phase To obtain richer feature representa-
tions, we apply a list of transformations on the input time series,
namely, Spectral Residual, FFT, De-seasonality and so on and get a
list of transformed series. Then we compute the common statistic
metrics, like mean and variance, and a selected set of time-series
features on the original time series, as well as on these transformed
series. The final dimension of features is 82. The transformations
and feature extractors can be extended based on needs. We use a
fixed window size 𝜔 to segment time series to which simulates the
real scenario that a limited length of historical points are seen when
detecting anomaly on the latest point.

Automated Model Selection Phase In this phase, the pre-
trained model selector and parameter estimator are invoked to
select an anomaly detection model for the incoming series automat-
ically. The model selector has been designed as a classification task.
The goal of this classifier is to select a proper anomaly detection
model based the extracted features. For each base anomaly detec-
tion model, there is an associated parameter estimator that predicts
key parameters. We use a regression task to learn the fitted hyper-
parameters for each kind of anomaly detection model. Details of
these two modules will be discussed in section 2.3.

Customized Anomaly Detection Phase Once the anomaly
detection model and parameters are known, a preliminary anomaly
result can be obtained by invoking that model to perform detection
on the input series. Then the result is refined by the Anomaly Result
Customized Tuning module with user-defined tuning parameters.
Finally, the customized anomaly detection result is represented to
the users. Details of the customized anomaly detection result tuning
algorithm is discussed in section 2.4.
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Figure 3: Patterns of Time-Series

2.2 Anomaly Detection Models
One of the main challenge in time-series anomaly detection is the
various pattern of time-series. Our approach Auto-Selector aims
to select the best anomaly detection model and its corresponding
hyper-parameters for each series. On serving an industrial time-
series anomaly detection service, we need to consider latency and
generalization. Such limitations motivate us to select model can-
didates from statistical time-series anomaly detection models or
unsupervised models since these models can achieve stable per-
formance efficiently [14]. In this work, Auto-Selector selects best
model from three candidates as follow:
• SR [14] transforms time-series into the frequency domain,
while anomalies are filtered with a certain threshold after the
transformation. This threshold is an important parameter
for SR and is included in the Parameter Estimator phase.
• HBOS [4] calculates the probability of being anomaly for
each data point based on the histogram with a certain thresh-
old of probability. The threshold used for probability filtering
is considered in our Parameter Estimator phase.
• S-H-ESD [5] detects anomalies by Extreme Studentized De-
viate test (ESD) after removing trend and seasonal informa-
tion. In S-H-ESD, the max anomaly ratio has been used to
control whether an individual point will be detected as an
anomaly. Therefore, we consider the max anomaly ratio as
an important hyper-parameter for S-H-ESD.

2.3 Pre-trained Anomaly Detection Model
Selector

In real world applications the distribution of time-series is often
stochastic and difficult to predict. A single anomaly detection model
is hardly capable of predicting all time-series correctly. Meanwhile,
the performance of an anomaly detection model relies heavily on
suitable hyper-parameters. To address these issues, we propose a
model selector that can select the most suitable anomaly detection
model and its associated hyper-parameters for each time-series
automatically. Specifically, the model selector has been learned
offline and serve online in Anomaly Detector.

Model selector aims to find a proper detection model𝑚 for each
series 𝑠 from the limited model spaceM. In order to train the model
selector, we build model space with popular anomaly detectionmod-
els. Although the scale of time series is tremendous, the detection

models and series patterns are limited. Assuming we have anomaly
labels of different series pattern, the model selector problem is actu-
ally a multi-classification problem. Therefore, we gather series with
anomaly labels as a time-series knowledge base. Constantly enrich
the knowledge base, we will get superior model selector. Presently,
we combine a multi-classifier with a heuristic classifier to generate
model selector which has been used in Anomaly Detector. The
multi-classifier is trained with the time-series knowledge base and
the heuristic classifier could ensure the detection quality once a
series pattern hasn’t been included in the knowledge base.

Specifically, the algorithm 1 shows howwe extract feature vector
®𝑈 for each series. Given a time-series ®𝑣 , 𝑛 transformations 𝑡𝑖 (®𝑣), 𝑖 ∈
[1, 𝑛] are applied on ®𝑣 to obtain 𝑛 transformed series ®𝑤𝑖 , 𝑖 ∈ [1, 𝑛].
Then 𝑘 feature extractors are applied on each transformed series
to generate 𝑛 feature vectors ®𝑢𝑖 ∈ R𝑘 . Those features are then
used to train the multi-classifier. With this classifier, a model with
confidence score C can be inferred for each series. If the classifier
cannot obtain confident result, a heuristic classifier will provide
empirical result for the series.

Algorithm 1 Series Feature Extraction

Require: ®𝑣 , 𝑡1 (·), 𝑡2 (·), ..., 𝑡𝑛 (·), 𝑓1 (·), 𝑓2 (·), ..., 𝑓𝑘 (·)
Ensure: ®𝑈

for 𝑖 ← 1 to 𝑛 do
®𝑤𝑖 ← 𝑡𝑖 (®𝑣)
®𝑢𝑖 ← (𝑓1 ( ®𝑤𝑖 ), 𝑓2 ( ®𝑤𝑖 ), ..., 𝑓𝑘 ( ®𝑤𝑖 ))

end for
®𝑈 ← ( ®𝑢1, ®𝑢2, ..., ®𝑢𝑛)

The mechanism of generating model selector makes it easier to
update the selector so that Anomaly Detector can keep pace with
cutting-edge anomaly detection techniques over time. Updating
time-series knowledge base and bring in new anomaly detection
models are convenient in this process. Concretely speaking, we
build an offline pipeline to automate the iterative development pro-
cess of model selector. This offline pipeline first passes through the
time-series knowledge base to know the best anomaly detection
model and associated parameters for each series. Then it trains
model selector to learn these knowledge by updating the transfor-
mations, feature extractors, multi-classifiers and parameter esti-
mators. If there are gains in the update, a set of gated test are run
against the newmodel selector to check if the quality, efficiency and
stability of the new model selector can reach the release standard.

2.4 Customized Anomaly Detection Result
Tuning

Customers may have the requirement of intuitively tuning the re-
sults as the tolerance on anomalies varies in different real scenarios.
To this end, we propose a method to customize the anomaly de-
tection result with a single parameter 𝛼 ∈ [0, 100]. The larger 𝛼
is, the more anomalies will be reported. Let ®𝑣 ∈ R𝑛 be the input
time-series of length 𝑛 and we compute through our pipeline the
initial anomaly detection result ®𝑎 ∈ R𝑛 , where 𝑎𝑖 = 1 if 𝑣𝑖 is an
anomaly otherwise 0 for 𝑖 = 1, · · · , 𝑛. We then apply Algorithm 2
to adjust ®𝑎. First, ®𝑣 is decomposed into three components ®𝑔, ®𝑠 and ®𝜖
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which represent the trend, the seasonality, and the loss component
of 𝑣𝑖 respectively. We compute a delta unit ®𝜇 based on the trend
component and estimate the final tolerant range ®𝛿 through a factor
function, where ®𝛿 is the maximum loss each point can accept and
the factor function is an exponentially decreasing function w.r.t. 𝛼 .
When the fluctuation is small comparing with the magnitude of the
normal values, 𝛼 is set to be smaller than 50, otherwise it should be
larger than 50. Finally, an anomaly point will be labeled as normal
if the absolute value of its loss is within its maximum tolerable
loss. To make the tuning process interactive, we have designed a
UI as shown in Figure 1. The purple area around the series reflects
the tolerant range under given 𝛼 . Users can change 𝛼 and find the
shape of the purple area changes gradually along with the anomaly
detection results.

Algorithm 2 Anomaly Detection Result Tuning

Require: ®𝑣 , ®𝑎, 𝛼
Ensure: ®𝑎′
®𝑔, ®𝑠, ®𝜖 ← decompose(®𝑣)
®𝜇 ← 0.5 · | ®𝑔| + 0.5 ·∑𝑛

𝑗=1 |𝑔 𝑗 |/𝑛
®𝛿 ← factor(𝛼) · ®𝜇
®𝑎′ ← ®𝑎 · 1( ®𝛿 > | ®𝜖 |)

3 EXPERIMENTS
3.1 Datasets and Metrics

Datasets. We use an internal time-series dataset TSD that is col-
lected in our production to evaluate our model. The statistics of this
dataset is shown in Table 1. This dataset is randomly divided into
two parts as the train set and test set by ratio 3 : 1. For each anomaly
detectorM𝑖 we select a set of candidate parameters {𝑝𝑖1, 𝑝

𝑖
2, · · · , 𝑝

𝑖
𝑛 }.

Then for each pair (M𝑖 , 𝑝
𝑖
𝑗
), 𝑗 = 1, · · · , 𝑛 we compute the F1 score

of anomaly detection on each time series and find the best pair as
the ground truth label for the model selector and the parameter
estimator.

Metrics. We use F1 score, precision, and recall to evaluate the per-
formance of our model for anomaly detection. In practice, anoma-
lous observations usually form contiguous segments since they
occur in a continuous manner. Following the evaluation strategy
of [14], we mark the whole segment as positive sample if any ob-
servation in this segment is detected as an anomaly correctly. In
real application, we expect our model discover anomalies promptly
in order to take actions. Only if there is a point in an anomaly
segmentation and the delay is no more than 𝑘 from the start of
the segmentation, we mark the whole segmentation as successful
detection. In our experiment, 𝑘 is set to 1.

3.2 Experiment Settings
In our experiments, besides SR [14], we select S-H-ESD [5] and
HBOS [4] as our base anomaly detection models. For each anomaly
detection model, a key hyper-parameter has been estimated in our
experiments. In SR and HBOS, we estimate threshold that has been
used to filter anomalies. In S-H-ESD, we estimate max anomaly ratio
which has been used to control the detection tolerance. The window

Table 1: Dataset

TSD
Number of sequences 1570
Dataset size 308,822
Number of anomalies 23,356
Anomaly ratio 7.56%

size of this experiment 𝜔 is 29. The model selector is implemented
as an LightGBM classification model and we implement a parameter
estimator for each anomaly detector as an LightGBM regression
model. Once the model selector outputs the candidate model, we
call its corresponding parameter estimator to compute the optimal
parameters.

Table 2: Quantitative Results

Model F1 Precision Recall
SR 0.3446 0.2724 0.4688

HBOS 0.4190 0.3753 0.4743
S-H-ESD 0.4148 0.3595 0.4901

Auto-Selector 0.4738 0.4780 0.4692

Table 3: Quantitative Results on Best Parameter

Model F1 Precision Recall
SR 0.4719 0.5137 0.4364

HBOS 0.4969 0.3910 0.6817
S-H-ESD 0.4711 0.3651 0.6638

Auto-Selector 0.5714 0.4909 0.6837

3.3 Results and Discussion
Table 2 compares Auto-Selector with base single anomaly detection
model. Parameter of each single anomaly detection model has use
its best parameter searched in the training set, specifically, threshold
of SR is 2, threshold of HBOS is 0.99 and max anomaly ratio of S-
H-ESD is 0.01. We could see Auto-Selector has improved 𝐹1 score
significantly which indicates our approach has the ability to select
best fitted model for each individual series.

In Table 3, we demonstrate 𝐹1 result with best parameter which
means hyper-parameter has been searched on the test set instead
of using the Parameter Estimator in Auto-Selector. Thus experi-
ment aims to analysis the performance of Model Selector. Com-
pared withModel Selector, Parameter Estimator aims to select
best hyper-parameter in a broader search space so it should be
difficult for this module to get satisfied result. We also select best
fitted hyper-parameter on test set for each single anomaly detec-
tion model. Obviously, the performance of each single anomaly
detection model has been improved in different extent. With best
fitted parameter, Auto-Selector also improve its 𝐹1 score more than
20%. The analysis result show that the trained model selector can
provide fitted anomaly detection model for each series.
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Figure 4: Online Architecture

4 ONLINE SERVING
In this section, we first describe how this framework is integrated
into our product in 4.1, then we report two cases that the Automated
Model Selection help improve the anomaly detection quality in our
product.

4.1 Online Architecture
We deploy the end-to-end framework into our online monitoring
system as containers1 on AKS2. Several main components have
been described in Figure 4. Periodically, the offline training module
will re-train the Auto-Selector to include updated labeled time-
series and update the selection candidates of time-series anomaly
detection models. In online serving, a model selection API will be
used to serve the offline-trained Auto-Selectormodel to select the
best model and its corresponding parameters for each individual
series. The Anomaly detection Job and Anomaly detection Model
Selection Job serve together to detect anomalies for each timestamp
of the input metrics in streaming. The model selection job will
trigger re-selection based on the anomaly rate and false alert rate of
a time-series. The anomaly detection job will leverage the selected
model to detect anomalies with the Anomaly Detection Calculation
API. Moreover, we design the feedback mechanism to collect labels
from users. Those feedback are added into the labeled time-series
conditionally.

4.2 Case Study
We study two cases in our service as shown in Figure 5. This first
case in 5(a) is a series with weekly pattern with one day as its
interval. While the interval of the second series in 5(c) is one hour
with multiple seasonality, i.e. daily and weekly patterns. By de-
fault, seasonal series will use S-H-ESD [5] to detect anomalies, with
anomaly ratio 0.15 on the day frequency series and 0.18 on the hour
frequency. False alerts (red circles in the figures) are reported by
customers. Root causes for these two dissatisfaction cases are 1)
the S-H-ESD algorithm is sensitive to small changes in the circular
part of the series but noises are common in such scenarios; 2) the
anomaly ratio is relative high in these two cases; 3) the boundaries
on these false positive timestamps are too narrow compared with
1https://kubernetes.io/docs/concepts/containers/
2https://azure.microsoft.com/en-us/services/kubernetes-service/

other timestamps whose values are larger (red rectangles in the
figures). These two dissatisfaction cases can be resolved withAuto-
Selector as it automatically selects the most suitable models for
each time series. It recommends HBOS [4] with threshold 0.923
for the first case (as shown in Figure 5(b)) and SR [14] algorithm
with threshold 4.894 for the second case (as shown in Figure 5(d)).
Moreover, the customized anomaly detection result tuning algo-
rithm gives a better boundary to cover different value scales so
that customers can obtain a suitable sensitivity with consistent
tolerance on different timestamps.

5 RELATEDWORKS
5.1 Time-Series Anomaly Detection Model
Time-Series anomaly detection models can be categorized into
statistical, supervised and unsupervised approaches. Hypothesis
testing [15], wavelet analysis [10], SVD [11] and ARIMA [18] are
the classic representatives in statistics literature. HBOS [4] and
S-H-ESD [5] are the latest ones in this area.

Although the traditional statistical methods are fast, their per-
formance are not satisfactory in real applications. To this end, re-
searchers have developed more advanced models. Opprentice [9]
leverages statistical detectors as feature extractors to build a ran-
dom forest classifier [8] and outperforms other traditional detectors.
With the inspiration from visual saliency detection, SR-CNN [14]
borrows the Spectral Residual model[6] from the visual saliency
detection model. It outperforms current state-of-the-art methods
by a large margin and especially improved F1-score by more than
20% on Microsoft production data.

However, continuous labels are hardly achievable in industrial
scenarios most of the time. DONUT [17], an unsupervised anomaly
detection method based on Variational Auto-Encoder (VAE) [3] is
proposed on the other hand. It uses the reconstruction error to
check if a point is anomaly or not.

5.2 Ensemble Multiple Anomaly Detection
Models

There are studies on ensemble anomaly detection. RandNet [2] uses
a series of autoencoders as base detectors. In 2017, Google also
leveraged deep learning neural networks (DNN, RNN, LSTM) [16]
to detect anomalies on their own datasets and achieved promising
results.

CARE [13] and SELECT [12] are two similar heuristic unsuper-
vised learning methods. After obtaining the detection results for
all the base detectors. They both takes multiple round of iterations
to converge to a final result. These two methods have risks that
the result from a poor detector will pollute the final result. In our
solution, such kind of risks are avoided as only the most suitable
detector is used to perform anomaly detection. Moreover, our solu-
tion is more efficient in time complexity as the detection result can
come out in one pass rather than multiple iterations.

Yahoo EGADS [7] utilizes a collection of anomaly detection,
change point detection and forecasting models with an anomaly
filtering layer for scalable anomaly detection on timeseries data. It
also implements two algorithms for threshold selection in its “Alert”
layer based on (a) K𝜎 deviation and (b) density distribution.
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(a) Detection results of Single Model (b) Detection results of Auto-Selector

(c) Detection results of Single Model (d) Detection results of Auto-Selector

Figure 5: Case Study

6 CONCLUSION
Time-series anomaly detection is a critical module to ensure the
quality of online service. An industrial anomaly detection system
should be able to leverage the advantage of any single anomaly
detection model. In this paper, we introduce an automated mecha-
nism to select best anomaly detection model and its corresponding
hyper-parameters. This automated mechanism has been used in
our product and benefited the online detection. Its ability makes it
easier to enable effective time-series anomaly detection and reduce
the time-cost of improving unsatisfied detection cases as we can
trigger re-selection automatically. In future, we will enhance the
ability of Parameter Estimator and reduce the dependence of
anomaly labels in building an accurate Auto-Selector.
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