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ABSTRACT
Multi-stage cascade architecture exists widely in many industrial
systems such as recommender systems and online advertising,
which often consists of sequential modules including matching,
pre-ranking, ranking, etc. For a long time, it is believed pre-ranking
is just a simplied version of the ranking module, considering the
larger size of the candidate set to be ranked. Thus, eorts are made
mostly on simplifying ranking model to handle the explosion of
computing power for online inference. For example, SOTA pre-
ranking solution of display advertising systems is to restrict the
pre-ranking model to follow a vector-product based deep learning
architecture: user-wise and ad-wise vectors are pre-calculated in
an oine manner with no user-ad cross features, then the inner
product of the two vectors is calculated online to obtain the pre-
ranking score. Obviously, this kind of model restriction results in
suboptimal performance.

In this paper, we rethink the challenge of the pre-ranking system
from an algorithm-system co-design view. Instead of saving comput-
ing power with restriction of model architecture which causes loss
of model performance, here we design a new pre-ranking system by
joint optimization of both the pre-rankingmodel and the computing
power it costs. We name it COLD (Computing power cost-aware
Online and Lightweight Deep pre-ranking system). COLD beats
SOTA in three folds: (i) an arbitrary deep model with cross fea-
tures can be applied in COLD under a constraint of controllable
computing power cost. (ii) computing power cost is explicitly re-
duced by applying optimization tricks for inference acceleration.
This further brings space for COLD to apply more complex deep
models to reach better performance. (iii) COLD model works in an
online learning and severing manner, bringing it excellent ability
to handle the challenge of the data distribution shift. Meanwhile,
the fully online pre-ranking system of COLD provides us with a
exible infrastructure that supports ecient new model developing
and online A/B testing. Since 2019, COLD has been deployed in
almost all products involving the pre-ranking module in the display
advertising system in Alibaba, bringing signicant improvements.
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Figure 1: Illustration of cascade architecture for industrial
information retrieval system.

1 INTRODUCTION
Users have been struggling with information overload due to the
rapid growth of internet services these years. Search engine, recom-
mender systems, and online advertising have become foundational
information retrieval applications which server billions of users ev-
ery day. Most of these systems [1–3, 9, 13–16] follow a multi-stage
cascade architecture, that is, candidates are extracted by sequential
modules such as matching, pre-ranking, ranking, and reranking,
etc. Figure 1 gives an brief illustration.

There have been numerous papers discussing how to build an
eective and ecient ranking system [1–5, 10, 13–16]. However,
very few works pay attention to the pre-ranking system [9, 14]. For
simplicity, in the rest of the paper, we limit ourselves to discuss the
design of the pre-ranking system in the display advertising system.
Techniques discussed here can be easily applied in recommender
systems, search engines, etc.

For a long time, it is believed that pre-ranking is just a simplied
version of the ranking system, considering the computing power
cost challenge of online serving with a larger size of the candidate
set to be ranked. Take the display advertising system in Alibaba as
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Figure 2: The development history of the pre-ranking system from model view. 𝑥𝑢 , 𝑥𝑎, 𝑥𝑢𝑎 are the raw features of user, ad and
cross. 𝑒𝑢 , 𝑒𝑎, 𝑒𝑢𝑎 are the embeddings of user, ad, and cross features. The rst generation is the non-personalized ad-wise statis-
tical model. LR (Logistic Regression) model is the second generation which is a lightweight version of the large scale ranking
model in the age of shallow machine learning [9]. It can be deployed in online learning and serving manner. Vector-product
based deep learning architecture is the third generation and current state-of-the-art pre-rankingmodel. It signicantly boosts
the model performance over the previous generation. COLD is our proposed new generation of the pre-ranking model.

an example. Traditionally, the size of the candidate set to be scored
for the pre-ranking system scales up to tens of thousands, which
turns to be hundreds in the subsequent ranking system. On the other
side, both ranking and pre-ranking systems have strict latency limit,
e.g., 10 ∼ 20 milliseconds. In this situation, the pre-ranking system
is often designed as a lightweight ranking system by simplifying
the ranking model to handle the explosion of computing power for
online inference.

1.1 Brief Introduction of the Development
History of the Pre-Ranking System

Looking back at the development history of the pre-ranking system
in industry, we can simply categorize it into four generations from
the model view, as shown in gure 2. The rst generation is the
non-personalized ad-wise statistical score. It calculates the pre-
rank score by averaging out the recent CTR (Click-Through Rate)
of each ad. The score can be updated with high frequency. LR
(Logistic Regression) model is the second generation which is a
lightweight version of the large scale ranking model in the age of
shallow machine learning. It can be deployed in the online learning
and servingmanner [11]. Vector-product based deep learningmodel
[2] is the third generation and current state-of-the-art pre-ranking
model. In this method, user-wise and ad-wise embedding vectors are
pre-calculated separately in an oine manner with no user-ad cross
features, then the inner product of the two vectors is calculated
online to obtain the pre-ranking score. Although vector-product
based DNN has signicantly boosted the model performance of
the rst two generations, it still suers from two challenges which
leave space for further improvement: (i)Model expression ability.
As shown in [17], the expression ability of the model is limited
by restricting deep models with vector-product form; (ii) Model

update frequency. The embedding vectors of the vector-product
based DNN need to be pre-calculated oine and then loaded into
the memory of the server for online calculation. It means the vector-
product based DNN model can only be updated in a low-frequency
manner, which make it hard to adapt to the newest data distribution
shift, especially when the data changes dramatically (e.g., Double
11 event in China).

To summarize, all the above mentioned three generations of the
pre-ranking system follow the same paradigm: computing power
is treated as a constant constraint, under which the pre-ranking
model corresponding with the training and serving system is de-
veloped. That is, the design of the model and the optimization of
the computing power is decoupled, which usually leads to a sim-
plication of the model to t the requirement of computing power.
This results in suboptimal performance.

1.2 COLD: New Generation of Pre-Ranking
System

In this paper, we rethink the challenge of the pre-ranking system
from an algorithm-system co-design view. Instead of saving comput-
ing power with restriction of model architecture which limits the
performance, here we design a new pre-ranking system by jointly
optimizing both the pre-rank model and the computing power it
costs. We name it COLD (Computing power cost-aware Online and
Lightweight Deep pre-ranking system), as illustrated in Figure 2.
We treat COLD as the fourth generation of the pre-ranking system.
COLD takes into consideration of both model design and system de-
sign. Computing power cost in COLD is also a variable that can be
optimized jointly with model performance. In other words, COLD
is a exible pre-ranking system that the trade-o between model
performance and computing power cost is controllable.
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Figure 3: Model expression ability v.s. update frequency of
the four generations of ranking system.

Key features of COLD are summarized as follows:
• Arbitrary deep model with cross features can be applied in
COLD under a constraint of controllable computing power
cost. In our real system, COLD model is a seven-layered
fully connected deep neural network with SE ( Squeeze-and-
Excitation) block [6]. SE block benets us to conduct feature
group selection to get a lightweight version from a complex
ranking model. This selection is executed by taking into
consideration of both model performance and computing
power cost. That is, computing power cost for COLD model
is controllable.

• Computing power cost is explicitly reduced by applying
optimization tricks such as parallel computation and semi-
precision calculation for inference acceleration. This further
brings space for COLD to apply more complex deep models
to reach better performance.

• COLD model works in an online learning and severing man-
ner, bringing system excellent ability to handle the challenge
of data distribution shift. The fully online pre-ranking sys-
tem of COLD provides us with a exible infrastructure that
supports new model developing and fast online A/B testing,
which is also the best system practice currently that ranking
system owns.

Figure 3 gives a comparison of all the four generations of ranking
system w.r.t. model expression ability and update frequency. COLD
achieves the best tradeo. Since 2019, COLD has been deployed in
almost all products involving the pre-ranking module in the display
advertising system in Alibaba, serving hundreds of millions of users
with high concurrent requests every day. Compared with vector-
product based DNN, our latest online version of the pre-ranking
model, COLD brings us more than 6% RPM improvement, which is
a signicant improvement for the business.

The rest of the paper is organized as follows: section 2 will give
an overview of an industrial pre-ranking system, then section 3 will

introduce the details of COLD, including issues of model design,
optimization of computing power cost and the whole infrastructure,
section 4 and 5 will give experimental comparison and conclusion.

2 OVERVIEW OF PRE-RANKING SYSTEM
As illustrated in gure 1, pre-ranking can be viewed as a connecting
link between matching and ranking modules. It receives the result
of matching and performs a rough selection to reduce the size
of the candidate set for the following ranking module. Take the
display advertising system in Alibaba as an example, the size M
of the candidate set that is fed into the pre-ranking system often
reaches ten thousand. Then the pre-ranking model selects top N
candidates by certain metrics, e.g. eCPM (expected Cost Per Mille)
for advertising system 1. The magnitude of N is usually several
hundred. These winning N candidates are further ranked by a
complex ranking model to get the nal results to be displayed to
users.

Generally speaking, pre-ranking shares similar functionality of
ranking. The biggest dierence lies in the scale of the problem.
Obviously, the size of candidates to be ranked is 10x or larger for
the pre-ranking system than the ranking system. Directly apply
ranking models in the pre-ranking system seems impossible, which
will face the great challenge of computing power cost. How to
balance the model performance and the computing power it costs
is the key consideration for designing the pre-ranking system.

2.1 Vector-Product based DNN Model
Driven by the success of deep learning, vector-product based DNN
model [2] has beenwidely used in pre-ranking systems and achieves
state-of-the-art performance. As shown in Figure 2, architecture
of vector-product based DNN model consists of two parallel sub
neural networks. User features are fed to the left sub network and
ad features to the right. For each sub network, features are fed into
the embedding layer rst and then concatenated together, followed
by FC (Fully Connected) layers. In this way, we obtain two x-size
vectors 𝒗𝒖 and 𝒗𝒂 which represents the user and ad information
respectively. Finally, the pre-ranking score 𝑝 is calculated as follows:

𝑝 = 𝜎 (𝒗𝑇𝒖𝒗𝒂), 𝑤ℎ𝑒𝑟𝑒 𝜎 (𝑥) =
1

1 + 𝑒−𝑥
. (1)

Training of the vector-product based DNN model follows the same
way as the traditional ranking model. In order to focus on the
key part of the pre-ranking model, we omit the details of training.
Readers can refer to previous work such as [15, 16] for detailed
introduction.

2.2 Shortcomings of the Pre-Ranking System
with Vector-Product based DNN Model

The vector-product based DNN model is ecient in latency and
computing resources. Vectors of 𝒗𝒖 and 𝒗𝒂 can be pre-calculated
separately in an oine manner and score 𝑝 can be calculated on-
line. This makes it friendly enough for tackling the challenge of
computing power costs. Figure 4 illustrates the classic implementa-
tion of infrastructure. Compared with previous generations of the

1eCPM = pCTR * bid for CPC (Cost Per Click) bidding based advertising system
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Figure 4: Infrastructure of pre-ranking system with vector-
product based DNN model.

pre-ranking model, the vector-product based DNN model achieves
signicant performance improvement.

However, the vector-product based DNN model pays too much
attention to reduce the computing power cost, by restricting the
model to be in the vector-product form, this results in suboptimal
performance. We summarize the shortcomings as follows:

• The model expression ability is limited by the vector-product
form, and can not utilize the user-ad cross features. Previ-
ous work [17] has shown the obvious superiority of incor-
porating complex deep models over vector-product form
networks.

• The user and ad vectors of 𝒗𝒖 and 𝒗𝒂 need to be pre-calculated
oine by enumerating all users and ads, to reduce the com-
puting resources and optimize the latency. For businesses
with hundreds of millions of users and tens of millions of
ads, the pre-calculation usually costs several hours, mak-
ing it hard to be adapted to the data distribution shift. This
will bring great hurt of model performance when the data
changes dramatically (e.g., Double 11 event in China).

• The model update frequency is also aected by the system
implementation. For the vector-product based DNN model,
the daily switch between versions of user/ad vectors indexes
needs to be executed at the same time, which is hard to
be met with two indexes stored in dierent online systems.
To our experience, the delayed switch also hurts the model
performance.

These shortcomings of the pre-ranking system with vector-
product based DNN model originates from the excessive pursuit of
computing power reduction and are hard to be tackled completely.
In the following sections, we will introduce our new solution, which
breaks the classic designing methodology for the pre-ranking sys-
tem.

3 COLD: COMPUTING POWER COST-AWARE
ONLINE AND LIGHTWEIGHT DEEP
PRE-RANKING SYSTEM

In this section, we will introduce our newly designed pre-ranking
system COLD in detail. The core idea behind COLD is to take into
consideration of both model design and system design. Computing

power cost in COLD is also a variable that can be optimized jointly
with model performance. In other words, COLD is a exible pre-
ranking system and the trade-o between model performance and
computing power cost is controllable.

3.1 Deep Pre-Ranking Model in COLD
Unlike the vector-product based DNN model, which reduces com-
puting power cost by restricting model architecture and thus causes
loss of model performance, COLD allows applying arbitrary com-
plex architecture of deep models to ensure the best model perfor-
mance. In other words, SOTA deep ranking models can be used
in COLD. For example, in our real system, we take GwEN (group-
wise embedding network, referred as baseModel in [16]) as our
initial model architecture, which is an early version of the online
model in our ranking system. Figure 2 illustrates GwEN, which is a
fully connected layer with the concatenation of feature group-wise
embedding as inputs. Note that cross features are also included in
GwEN network.

Of course, the computing power cost of online inference by
applying deep rank models with complex architecture directly is
unacceptable, with a larger size of the candidate set to be ranked in
the pre-ranking system. To tackle the critical challenge, we apply
two ways of optimization strategy: one way is to design a exible
network architecture that can make a trade-o between model per-
formance and computing power cost, the other way is to explicitly
reduce computing power cost by applying engineered optimization
tricks for inference acceleration.

3.2 Design of Flexible Network Architecture
Generally speaking, we need to introduce suitable designs of net-
work architecture to get a lightweight version of the deep model
from the full version of the initial GwEN model. Techniques such as
network pruning, feature selection, and neural architecture search,
etc. can be applied in this task. In our real practice, we choose the
feature selection approach which is convenient for a controllable
trade-o between model performance and computing power cost.
Other techniques are also applicable, which we leave readers for
further trying [7, 8].

Specically, we apply the SE (Squeeze-and-Excitation) block [6]
for feature selection. SE block is rstly used in CV (Computer Vi-
sion) to explicitly model the inner-dependencies between channels.
Here we use SE block to get the importance weights of group-wise
features and select the most suitable ones in COLD, by measuring
both model performance and computing power cost.

Importance weight calculation. Let 𝑒𝑖 denote the embedding of
𝑖𝑡ℎ input feature group. The SE Block squeezes the input 𝑒𝑖 into a
scalar value of weight 𝑠𝑖 , which is calculated as:

𝑠𝑖 = 𝜎 (𝑾𝑒𝑖 + 𝑏), (2)

WhereW ∈ R𝑘×1, 𝑏 ∈ R1.W and 𝑏 are learnable parameters.

Feature group selection. The weight vector s represents the im-
portance of each feature group.We use the weight to rank all feature
groups and select K groups of features with top weights. Then an
oine test is conducted to evaluate the model performance and sys-
tem performance of the candidate lightweight version of the model
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Figure 5: Row V.S. Column based computations. Column based method is cache-friendly and enables further acceleration.

with selected K groups of features. Metrics include GAUC[16], QPS
(Queries Per Seconds, whichmeasures the throughput of the model),
and RT (return time, which measures the latency of model). With
several heuristic tries of number K, i.e., groups of features, we nally
choose the version with the best GAUC under a given constraint of
system performance as our nal model. In this way, the trade-o
between model performance and computing power costs can be
conducted in a exible way.

3.3 Engineered Optimization Tricks
Apart from reducing the computing power cost by exible network
architecture design, which is hard to avoid the hurt of model per-
formance to some degree, we also apply various optimization tricks
from an engineering view, to further bring space for COLD to apply
more complex deep models to reach better performance.

Here we introduce the hands-on experience in the case of our
display advertising system in Alibaba. Situations may vary from
system to system. Readers can make choices according to the actual
situation. In our display advertising system, the online inference en-
gine of the pre-ranking module mainly contains two parts: feature
computation and dense network computation. In feature compu-
tation, the engine pulls user and ad features from the indexing
system and then computes cross-features. In dense network compu-
tation, the engine rst turns features into embedding vectors and
concatenate them as the input of the network.

ParallelismatAll Level. To achieve low latency and high through-
put inference with low computing power cost, leveraging parallel
computing is important. Our system, therefore, applies parallelism
whenever is possible. Fortunately, the pre-rank score of dierent
ads is independent of each other. This means they can be com-
puted in parallel with the cost that there may be some duplicated
computation related to user features.

At a high level, one front-end user query will be split into sev-
eral inference queries. Each query handles parts of the ads and
the results will be merged after all the queries return. Therefore
there are trade-os when deciding how many queries to split. More
queries mean few ads for each query and therefore lower latency
for an individual query. But too many queries can also lead to huge
duplicated computation and system overhead. Also, as the queries
are implemented using RPC (Remote Procedure Call) in our system,
more queries mean more network trac and could have a higher
chance of delay or failure.

When handling each query, multi-thread processing is used for
feature computation. Again, each thread handles parts of ads to re-
duce the latency. Finally, when executing dense network inference,
we use GPU to accelerate the computation.

Column based Computation. Traditionally, feature computa-
tion is done in a row based manner: ads are being processed one
by one. However, such a row based method is not cache-friendly.
Instead, we use a column-based method to put computations of one
feature column together. Figure 5 illustrates the two kinds of compu-
tation modes. By doing so, we can use techniques like SIMD (Single
Instruction Multiple Data) to accelerate feature computation.

Low precision GPU calculation. For COLD model, most of the
computation is the dense matrix multiplication, which leaves op-
timization space. In NVIDIA’s Turing Architecture, the T4 GPU
provides extreme performance for Float16 and Int8 matrix multipli-
cation which perfectly ts our case. The theoretical peak FLOPS for
Float16 can be 8 times higher than Float32. However, the Float16
loses some precision. In practice, we found that for some scenario,
as we use sum-pooling for some feature groups, the input of the
dense network could be a very large number and exceed Float16
representation. To solve this, one solution is to use normalization
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Figure 6: The linear_log function

layers like the batch-norm layer. However, the BN layer itself con-
tains moving-variance parameters whose scale could be even larger.
This means the computation graph needs to be mix-precision [12]
that fully-connected layers use Float16 and batch-norm layers use
Float32. Another approach is to use a parameter-free normalization
layer. For example, the logarithmic function can easily transform
large numbers into a reasonable range. However, log() function can
not handle negative values and can result in a huge number when
input is near zero. Therefore, we design a piece-wised smooth func-
tion called linear-log operator to handle that unwanted behavior,
as shown in Eq. 3

𝑙𝑖𝑛𝑒𝑎𝑟_𝑙𝑜𝑔(𝑥) =


−𝑙𝑜𝑔(−𝑥) − 1 𝑥 < −1
𝑥 −1 ≤ 𝑥 ≤ 1.

𝑙𝑜𝑔(𝑥) + 1 𝑥 > 1
(3)

The graphics of the linear_log() function can be seen in Figure
6. It transforms Float32 numbers into a reasonable range. So if we
put a linear_log operator in the rst layer, it guarantees the input
of the network would be small. Also, the linear_log() function is
𝐶1 continuous, so that it won’t make network training harder. In
practice, we found that after adding this layer, the network can still
reach the same accuracy comparing to the original COLD model.

After using Float16 for inference, we found that the running
time of CUDA kernel drops dramatically, and the kernel launching
time becomes the bottleneck. To boost actual Querys Per Seconds
(QPS), we further use MPS (Multi-Process Service) to reduce over-
head when launching the kernels. Combining Float16 and MPS, the
engine throughput is twice as before.

3.4 Fully Online Infrastructure of COLD
Pre-Ranking System

Beneting from the unrestricted model architecture, COLD can be
implemented under a fully online infrastructure: both training and
serving are executed in an online manner, as illustrated in Figure
7. From the industry view, it’s the best system practice currently
that the ranking system owns. This infrastructure benets COLD
in two folds:

user features ad features cross features

SE Block

Concat

User Feature Table

Ad Feature Table

Pre-Ranking 
Server

Online Learning (Training) Online Serving

Figure 7: Infrastructure of fully online infrastructure of
COLD pre-ranking system.

• Online learning of COLD model brings its excellent abil-
ity to handle the challenge of data distribution shift. To
our experience, as shown in the next experimental section,
the improvement of model performance that COLD model
over vector-product based DNN model is more signicant
when the data changes dramatically (e.g., Double 11 event
in China). Besides, COLD model is more friendly to the new
ads with online learning.

• The fully online pre-ranking system of COLD provides us
with a exible infrastructure that supports ecient new
model developing and online A/B testing. Remember that
for vector-product based DNN model, vectors of the user
and ad side need to be pre-calculated oine and load to
inference engine by index. Thus it involves development
over several systems to conduct A/B testing of two versions
of vector-product based DNN model. To our experience, the
typical time cost to get a solid A/B testing result is several
days, which in turn is several hours for COLD. Besides, fully
online serving also helps COLD to avoid delayed switch that
the vector-product based DNN model suers.

4 EXPERIMENTS
We conduct careful comparisons to evaluate the performance of
the proposed pre-ranking system COLD. As an industrial system,
comparisons are conducted on both model performance and sys-
tem performance. To the best of our knowledge, there are merely
public datasets or pre-ranking systems for this task. The following
experiments are executed in the online display advertising system
in Alibaba.

4.1 Experimental Settings
The strongest baseline of COLD model is the SOTA vector-product
based DNN model, which is the latest version of the online pre-
ranking model in our display advertising system.

Both COLD model and vector-product based DNN model are
trained with more than 90 billion samples, which are collected from
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Table 1: Oline evaluation results

Method GAUC Recall

Vector-Product based DNN Model 0.6232 88%
COLD 0.6391 96%
DIEN 0.6511 100%

logs of the real system. Note that the vector-product based DNN
model shares the same user and ad features with COLD model. The
vector-product based DNN model could not introduce any user-
ad cross features, while COLD model uses user-ad cross features.
For a fair comparison, we also evaluate the performance of COLD
model with dierent groups of cross features. For COLD model,
the feature embedding vectors are concatenated together and then
fed into a fully connected network (FCN). The structure of this
FCN is 𝐷𝑖𝑛 × 1024 × 512 × 256 × 128 × 64 × 2, where 𝐷𝑖𝑛 means
the dimension of the concatenated embedding vectors of selected
features. For the vector-product based model, the FC layers are set
by 200×200×10. The dimension of input feature embedding is set to
be 16 for both two kinds of models. We use Adam solver to update
the model parameters. GAUC [16] is used as the metric to evaluate
the oine performance of the models. Besides, we introduce a new
metric of top-k recall, to measure the alignment degree between
the pre-ranking model and subsequent ranking model. The top-k
recall rate is dened as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{top k ad candidates} ∩ {top m ad candidates}|

|{top m ad candidates}}| , (4)

where the top k candidates and the top m candidates are generated
from the same candidate set, which is the input of the pre-ranking
module. The top k ad candidates are ranked by the pre-ranking
model and the top m ad candidates are ranked by ranking model.
The ranking metric is eCPM (expected Cost Per Mille, eCPM =
pCTR * bid). In our experiments, the ranking model uses DIEN [15],
a previous version of the online ranking system.

For evaluation of system performance, we use metrics including
QPS (Queries Per Seconds, which measures the throughput of the
model), RT (return time, which measures the latency of model).
These metrics reect the computing power cost of the model under
the same size of the candidate set to be pre-ranked. Roughly speak-
ing, larger QPS under lower RT means lower computing power cost
for a given model.

4.2 Evaluation on Model Performance
Table 1 shows the oine evaluation results of dierent models. We
can see that COLDmaintain a comparable GAUC with our previous
version ranking model DIEN, and achieves signicant improvement
both in GAUC and Recall compared with the vector-product based
model.

We also conduct careful online A/B testing. Table 2 shows the
lift of COLD model over the vector-product based DNN model. In
normal days, COLD model achieves 6.1% CTR and 6.5% RPM (Rev-
enue Per Mille) improvement, which is signicant to our business.
Moreover, the improvement turns to be 9.1% CTR and 10.8% RPM
during the double 11 event. It proves the value of the fully online

Table 2: Results of online A/B testing by comparing COLD
model with vector-product based DNN model.

Time CTR lift RPM lift

Normal Days +6.1% +6.5%
Double 11 Event +9.1% +10.8%

Table 3: Comparison of system performance of pre-ranking
system that servers with dierent models

Model QPS RT

Vector-Product based DNN Model 60000+ 2ms
COLD 6700 9.3ms
DIEN 629 16.9ms

Table 4: Trade-o performance of pre-ranking sys-
tem with dierent versions of COLD model

Model QPS RT GAUC

COLD (No Cross Features) 6860 8.6ms 0.6281
COLD * 6700 9.3ms 0.6391
COLD (All Features) 2570 10.6ms 0.6467
* This is the balanced version of COLD model that
we use as product version. It users partial of cross-
features.

infrastructure of COLD which can enable the model to be adapted
to the newest data distribution when the data changes dramatically.

4.3 Evaluation on System Performance
We evaluate the QPS and RT of the pre-ranking system that serves
with dierent models. Table 3 gives the results. Vector-product
based model runs on a CPU machine with 2 Intel(R) Xeon(R) Plat-
inum 8163 CPU@ 2.50GHz (96 cores) and 512GB RAM. COLD mod-
els and DIEN run on a GPU machine with NVIDIA T4 equipped. In
this time, the vector-product based DNN model achieves the best
system performance, which is as expected. The computing power
of DIEN costs the most. COLD achieves the balance.

4.4 Ablation Study of COLD
To further understand the performance of COLD, we conduct ex-
periments on both model design view and engineered optimization
techniques view. For the latter one, as it is hard to decouple all the
optimization techniques from the integrated system and compare
each of them, here we conduct an evaluation on the most signicant
factor of low precision computation of GPU.

Trade-operformance of the pre-ranking systemwith dif-
ferent versions of COLD model. In the model design stage, we
use the SE block to get the feature important weights and select dif-
ferent groups of features as the candidate version of models. Then
we conduct the oine experiments to evaluate the models with
QPS, RT, and GAUC. Table 4 shows results. Obviously, computing
power cost of COLD model varies with dierent features. This ts
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Table 5: Comparison of system performance by computing
with dierent GPU precisions

Precision QPS

COLD (Float32) 2800
COLD (Float16) 3400

COLD (Float16+MPS) 6700

our design of exible network architecture. COLDmodel with more
cross features achieves better performance, which also increases
the burdens for online serving correspondingly. In this way, we can
make a trade-o of model performance and computing power cost.
In our real system, we choose the balanced version manually by
experience.

Comparison of computing with dierent GPU precisions.
The experiments run on a GPU machine with NVIDIA T4. When
running the experiments, we gradually increase the QPS from the
client-side, until the more than 1% of the server responding time
begins to exceed the latency limit. We then record the current QPS
as usable QPS. As shown in Table 5, the Float32 version has the
lowest usable QPS. Using Float16 alone can improve about 21% of
the usable QPS. Combining Float16 and CUDA MPS, we can double
the usable QPS comparing to Float32, and can fully utilize the GPU
without exceeding the latency limit.

5 CONCLUSION
In this paper, we introduce our new generation of pre-ranking
system COLD in detail . It is designed from a brand-new perspec-
tive. Instead of saving computing power with hard restriction of
model architecture which causes loss of model performance, COLD
takes into consideration both model design and system design.
Computing power cost in COLD is also a variable that can be op-
timized jointly with model performance. With the co-design of
the model architecture and computing power cost, COLD turns to
be a exible pre-ranking system that the trade-o between model
performance and computing power cost is controllable. This new
pre-ranking system enables a better pursuit of model performance.
Experiments show COLD model achieves more than 6% RPM lift
over vector-product based DNN model, our latest online version
of the pre-ranking model, which is signicant to the business. Be-
sides, COLD can be implemented with a fully online infrastructure
for both training and serving, achieving the best system practice
that the current ranking system owns. Since 2019, COLD has been
deployed in the display advertising system in Alibaba and serves
the main trac of almost all products, contributing a signicant
business revenue growth.
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