
DCAF: A Dynamic Computation Allocation Framework for
Online Serving System

Biye Jiang, Pengye Zhang, Rihan Chen
∗

Binding Dai, Xinchen Luo, Yin Yang, Guan Wang, Guorui Zhou, Xiaoqiang Zhu, Kun Gai

Alibaba Group

ABSTRACT
Modern large-scale systems such as recommender system and on-

line advertising system are built upon computation-intensive infras-

tructure. The typical objective in these applications is to maximize

user experience, revenue and other business targets under a limited

computation resource. Usually, the online serving system follows a

multi-stage cascade architecture, which consists of several stages

including retrieval, pre-ranking, ranking, etc. These stages usually

allocate resource manually with speci�c computing power budgets,

which requires the serving con�guration to adapt accordingly. As

a result, the existing system easily falls into suboptimal solutions

with respect to maximizing the total revenue. The limitation is due

to the face that, although the value of requests varies greatly, online

serving system still allocate equal computing resource among them.

In this paper, we introduce a novel idea that online serving sys-

tem could treat each request di�erently and allocate "personalized"

computation resource based on its value.We formulate this resource

allocation problem as a knapsack problem and propose a Dynamic

Computation Allocation Framework (DCAF). Under some general

assumptions, DCAF can theoretically guarantee that the system

can maximize the total revenue within given computation budget.

DCAF brings signi�cant improvement and has been deployed in the

display advertising system of Taobao for serving the main tra�c.

With DCAF, we are able to maintain the same business performance

with 20% computation resource reduction.

KEYWORDS
Dynamic Computation Allocation, Online Serving System

ACM Reference Format:
Biye Jiang, Pengye Zhang, Rihan Chen and Binding Dai, Xinchen Luo, Yin

Yang, Guan Wang, Guorui Zhou, Xiaoqiang Zhu, Kun Gai. 2020. DCAF: A

Dynamic Computation Allocation Framework for Online Serving System.

In 2nd Workshop on Deep Learning Practice for High-Dimensional Sparse
Data with KDD 2020, Aug 24, 2020, San Degio, CA. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗
These three authors contributed equally, corresponding author: Guorui Zhou

<guorui.xgr@alibaba-inc.com>

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

DLP-KDD ’20, Aug 24, 2020, San Degio, CA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern large-scale systems such as recommender system and on-

line advertising are built upon computation-intensive infrastruc-

ture [7] [21] [20]. With the popularity of e-commerce shopping, e-

commerce platform such as Taobao, theworld’s leading e-commerce

platforms, are now enjoying a huge boom in tra�c [4], e.g. user re-

quests at Taobao are increasing year by year. As a result, the system

load is under great pressures [19]. Moreover, request �uctuation

also gives critical challenge to online serving system. For example,

the Taobao recommendation system always bears many spikes of

requests during the period of Alibaba’s Singles Day sales.

Figure 1: Illustration of our cascaded display advertising
system. Each request will be served through these modules
sequentially. Considering the limitation of computation re-
source and latency for online serving system, the�xedquota
of candidate advertisements, denoted by 𝑁 for each module,
is usually pre-de�ned manually by experience.

To address the above challenges, the prevailing practices for

online engine are: 1) decomposing the cascade system [14] into

multiple modules and manually allocating a �xed quota for each

module by experience, as shown in Figure 1; 2) designing many

computation downgrade plans in case the sudden tra�c spikes

arrive and manually executing these plans when needed.

These non-automated strategies are often lack of �exibility and

require human interventions. Furthermore, most of these practices

often impact on all requests once they are executed and ignore

the fact that the value of requests varies greatly. Obviously it is

a straightforward but better strategy to allocate the computation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLP-KDD ’20, Aug 24, 2020, San Degio, CA Jiang, Zhang and Chen, et al.

resource by biasing towards the requests that are more valuable

than others, for maximizing the total revenue.

Considering the shortcomings of existing works, we aim at build-

ing a dynamic allocation framework that can allocate the compu-

tation budget �exibly among requests. Moreover, this framework

should also take into account the stability of the online serving

system which are frequently challenged by request boom and spike.

Speci�cally, we formulate the problem as a knapsack problem, of

which objective is to maximize the total revenue under a computa-

tion budget constraint. We propose a dynamic allocation framework

named DCAF which could consider both computation budget allo-

cation and stability of online serving system simultaneously and

automatically.

Our main contributions are summarized as follow:

• We break through the stereotypes in most cascade systems

where each individual module is limited by a �xed compu-

tation budget separately. We introduce a brand-new idea

that computation budget can be allocated w.r.t the value of

requests in a "personalized" manner.

• We propose a dynamic allocation framework DCAF which

could guarantee in theory that the total revenue can be maxi-

mized under a computation budget constraint. Moreover, we

provide an powerful control mechanism that could always

keep the online serving system stable when encountering

the sudden spike of requests.

• DCAF has been deployed in the display advertising system

of Taobao, bringing a notable improvement. To be speci�c,

systemwith DCAFmaintains the same business performance

with 20% Graphics Processing Unit (GPU) resource reduction

for online ranking system. Meanwhile, it greatly boosts the

online engine’s stability.

• By de�ning the new paradigm, DCAF lays the cornerstone

for jointly optimizing the cascade system among di�erent

modules and raising the ceiling height for performance of

online serving system further.

2 RELATEDWORK
Quite a lot of research have been focusing on improving the serv-

ing performance. Park et al. [15] describes practice of serving deep

learning models in Facebook. Clipper [10] is a general-purpose

low-latency prediction serving system. Both of them use latency,

accuracy, and throughput as the optimization target of the sys-

tem. They also mentioned techniques like batching, caching, hyper-

parameters tuning, model selection, computation kernel optimiza-

tion to improve overall serving performance. Also, many research

and system use model compression [12], mix-precision inference,

quantization [9, 11], kernel fusion [6], model distillation [13, 19] to

accelerate deep neural net inference.

Traditional work usually focus on improving the performance

of individual blocks, and the overall serving performance across

all possible queries. Some new systems have been designed to take

query diversity into consideration and provide dynamic planning.

DQBarge [8] is a proactive system using monitoring data to make

data quality tradeo�s. RobinHood [2] provides tail Latency aware

caching to dynamically allocate cache resources. Zhang et al. [18]

takes user heterogeneity into account to improve quality of experi-

ence on the web. Those systems provide inspiring insight into our

design, but existing systems did not provide solutions for computa-

tion resource reduction and comprehensive study of personalized

planning algorithms.

3 FORMULATION
We formulate the dynamic computation allocation problem as a

knapsack problem which is aimed at maximizing the total revenue

under the computation budget constraint. We assume that there

are 𝑁 requests {𝑖 = 1, . . . , 𝑁 } requesting the e-commerce platform

within a time period. For each request, 𝑀 actions { 𝑗 = 1, . . . , 𝑀}
can be taken. We de�ne𝑄𝑖 𝑗 and 𝑞 𝑗 as the expected gain for request

𝑖 that is assigned action 𝑗 and the cost for action 𝑗 respectively. 𝐶

represents the total computation budget constraint within a time

period. For instance, in the display advertising system deployed in

e-commerce, 𝑞 𝑗 can be de�ned as items (ads) quota that request the

online engine to evaluate, which positively correlate with system

load in usual. For 𝑄𝑖 𝑗 , the E�ective Cost Per Mile (eCPM) condi-

tioned on action 𝑗 can be an appropriate choice. A few potential

choices are given below:

• There are a bunches of CTR models which are di�erent

in their complexities and providing online services simul-

taneously. For each request 𝑖 , the platform can choose an

appropriate CTR model for it.

• In a cascade system, it is not necessary for all requests to go

through every module. For example, the platform let request

𝑖 skip Pre-Ranking stage and go to Ranking stage directly.

𝑥𝑖 𝑗 is the indicator that request 𝑖 is assigned action 𝑗 . For each

request, there is one and only one action 𝑗 can be taken, in other

words, 𝑥𝑖 . is an one-hot vector.

Following the de�nitions above, for each request, our target is to

maximize the total revenue under computation budget by assigning

each request 𝑖 with appropriate action 𝑗 . Formally,

max

∑
𝑖 𝑗

𝑥𝑖 𝑗𝑄𝑖 𝑗

s.t.
∑
𝑖 𝑗

𝑥𝑖 𝑗𝑞 𝑗 ≤ 𝐶∑
𝑗

𝑥𝑖 𝑗 ≤ 1

𝑥𝑖 𝑗 ∈ {0, 1} (1)

where we assume that each individual request has its "personalized"

value, thus should be treated di�erently. Besides, request expected

gain is correlated with action 𝑗 which will be automatically taken

by the platform in order to maximize the objective under the con-

straint. In this paper, we mainly focus on proving the e�ectiveness

of DCAF’s framework. However, in real case, we are faced with

several challenges which are beyond the scope of this paper. We

simply list them as below for considering in the future:

• The dynamic allocation problem [2] are usually coupled with

real-time request and system status. As the online tra�c

and system status are both varying with time, we should

consider the knapsack problem to be real-time, e.g. real-time

computation budget.

DCAF: A Dynamic Computation Allocation Framework for Online Serving System DLP-KDD ’20, Aug 24, 2020, San Degio, CA

• 𝑄𝑖 𝑗 are unknown, thus needs to be estimated.𝑄𝑖 𝑗 prediction

is vital to maximize the objective, which means real-time and

e�cient approaches are required to estimate the value. Be-

sides, to avoid increasing the system’s burden, it is essential

for us to consider light-weighted methods.

4 METHODOLOGY
4.1 Global Optimal Solution and Proof
To solve the problem, we �rst construct the Lagrangian from the

formulation above,

𝐿 = −
∑
𝑖 𝑗

𝑥𝑖 𝑗𝑄𝑖 𝑗 + 𝜆(
∑
𝑖 𝑗

𝑥𝑖 𝑗𝑞 𝑗 −𝐶) +
∑
𝑖

(𝜇𝑖 (
∑
𝑗

𝑥𝑖 𝑗 − 1))

=
∑
𝑖 𝑗

𝑥𝑖 𝑗 (−𝑄𝑖 𝑗 + 𝜆𝑞 𝑗 + 𝜇𝑖) − 𝜆𝐶 −
∑
𝑖

𝜇𝑖

s.t.𝜆 ≥ 0

𝜇𝑖 ≥ 0

𝑥𝑖 𝑗 ≥ 0 (2)

where we relax the discrete constraint for the indicator 𝑥𝑖 𝑗 , we could

show that the relaxation does no harm to the optimal solution. From

the primal, the dual function [3] is

max

𝜆,𝜇
min

xij

(
∑
𝑖 𝑗

𝑥𝑖 𝑗 (−𝑄𝑖 𝑗 + 𝜆𝑞 𝑗 + 𝜇𝑖) − 𝜆𝐶 −
∑
𝑖

𝜇𝑖) (3)

With 𝑥𝑖 𝑗 ≥ 0 (𝑥𝑖 𝑗 ≤ 1 is implicitly described in the Lagrangian), the

linear function is bounded below only when −𝑄𝑖 𝑗 + 𝜆𝑞 𝑗 + 𝜇𝑖 ≥ 0.

And only when −𝑄𝑖 𝑗 + 𝜆𝑞 𝑗 + 𝜇𝑖 = 0, the inequality 𝑥𝑖 𝑗 > 0 could

hold which means 𝑥𝑖 𝑗 = 1 in our case (remember that the 𝑥𝑖 . is an

one-hot vector). Formally,

max

𝜆,𝜇
(−𝜆𝐶 −

∑
𝑖

𝜇𝑖)

s.t. −𝑄𝑖 𝑗 + 𝜆𝑞 𝑗 + 𝜇𝑖 ≥ 0

𝜆 ≥ 0

𝜇𝑖 ≥ 0

𝑥𝑖 𝑗 ≥ 0 (4)

As the dual objective is negatively correlated with 𝜇, the global

optimal solution for 𝜇 would be

𝜇𝑖 = max

j

(𝑄𝑖 𝑗 − 𝜆𝑞 𝑗) (5)

Hence, the global optimal solution to 𝑥𝑖 𝑗 that indicate which action

𝑗 could be assigned to request 𝑖 is

𝑗 = argmax

j

(𝑄𝑖 𝑗 − 𝜆𝑞 𝑗) (6)

From Slater’s theorem [17], it can be easily shown that the Strong

Duality holds in our case, which means that this solution is also

the global optimal solution to the primal problem.

4.2 Parameter Estimation
4.2.1 Lagrange Multiplier.
The analytical form of Lagrange multiplier cannot be easily, or

even possibly derived in our case. And meanwhile, the exact global

optimal solution in arbitrary case is computationally prohibitive.

However, under some general assumptions, simple bisection search

could guarantee that the global optimal 𝜆 could be obtained. With-

out loss of generality, we reset the indices of action space by fol-

lowing the ascending order of 𝑞 𝑗 ’s magnitude.

Assumption 4.1. 𝑄𝑖 𝑗 is monotonically increasing with 𝑗 .

Assumption 4.2. 𝑄𝑖 𝑗/𝑞 𝑗 is monotonically decreasing with 𝑗 .

Lemma 1. Suppose Assumptions (4.1) and (4.2) hold, for each 𝑖 ,
𝑄𝑖 𝑗

1
/𝑞 𝑗

1
≥ 𝑄𝑖 𝑗

2
/𝑞 𝑗

2
will hold if 𝜆1 ≥ 𝜆2, where 𝑗1 and 𝑗2 are the actions

that maximize the objective under 𝜆1 and 𝜆2 respectively.

Proof. As Equation (5) and 𝜇𝑖 ≥ 0, the inequality𝑄𝑖 𝑗 − 𝜆𝑞 𝑗 ≥ 0

holds. Equally, 𝑄𝑖 𝑗/𝑞 𝑗 ≥ 𝜆 holds. Suppose 𝑄𝑖 𝑗
1
/𝑞 𝑗

1
< 𝑄𝑖 𝑗

2
/𝑞 𝑗

2
, we

have 𝑄𝑖 𝑗
2
/𝑞 𝑗

2
> 𝑄𝑖 𝑗

1
/𝑞 𝑗

1
≥ 𝜆1 ≥ 𝜆2. However, we could always �nd

𝑗∗
2
such that 𝑄𝑖 𝑗∗

2

≥ 𝑄𝑖 𝑗2 and 𝑞 𝑗∗
2

> 𝑞 𝑗2 where 𝑄𝑖 𝑗
1
/𝑞 𝑗

1
≥ 𝑄𝑖 𝑗∗

2

/𝑞 𝑗∗
2

≥
𝜆1 ≥ 𝜆2 such that 𝑄𝑖 𝑗∗

2

≥ 𝑄𝑖 𝑗2 by following the Assumptions (4.1)

and (4.2). In order words, 𝑗2 is not the action that maximize the

objective. Therefore, we have 𝑄𝑖 𝑗
1
/𝑞 𝑗

1
≥ 𝑄𝑖 𝑗

2
/𝑞 𝑗

2
. �

Lemma 2. Suppose Assumptions (4.1) and (4.2) could be satis�ed,
both𝑚𝑎𝑥

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 and its corresponding

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 are monotoni-

cally decreasing with 𝜆.

Proof. With 𝜆 increasing, 𝑄𝑖 𝑗/𝑞 𝑗 is also increasing monotoni-

cally by Lemma (1). Moreover, by Assumptions (4.1) and (4.2), we

conclude that both𝑚𝑎𝑥
∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 and its corresponding

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗

are monotonically decreasing with 𝜆. �

Theorem 1. Suppose Lemma (2) holds, the global optimal La-
grange Multiplier 𝜆 could be obtained by �nding a solution that make∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 = 𝐶 hold through bisection search.

Proof. By Lemma (2), this proof is almost trivial. We denote

the Lagrange Multiplier that makes

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 = 𝐶 hold as 𝜆∗. Obvi-

ously, the increase of 𝜆∗ will result in computation overload and

the decrease of 𝜆∗ will inevitably reduce max

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 due to the

monotonicity in Lemma (2). Hence, 𝜆∗ is the global optimal solution

to the constrained maximization problem. Besides, the bisection

search must work in this case which is also guaranteed by the

monotonicity. �

Assumption (4.1) usually holds because the gain is directly pro-

portional to the cost in general,e.g. more sophisticated models

usually bring better online performance. For Assumption (4.2), it

follows the law of diminishing marginal utility [16], which is an

economic phenomenon and reasonable in our constrained dynamic

allocation case.

The algorithm for searching Lagrange Multiplier 𝜆 is described

in Algorithm 1. In general, we implement the bisection search over

a pre-de�ned interval to �nd out the global optimal solution for 𝜆.

Suppose min𝑗
∑

𝑗 𝑞 𝑗 ≤ 𝐶 ≤ max𝑗
∑

𝑗 𝑞 𝑗 (o.w there is no need for

dynamic allocation), it can be easily shown that 𝜆 locates in the in-

terval [0,min𝑖 𝑗 (𝑄𝑖 𝑗/𝑞 𝑗)]. Then we get the global optimal 𝜆 through

bisection search of which target is the solution of

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 = 𝐶 .

For more general cases, more sophisticated method other than

bisection search, e.g. reinforcement learning, will be conducted to

explore the solution space and �nd out the global optimal 𝜆.

DLP-KDD ’20, Aug 24, 2020, San Degio, CA Jiang, Zhang and Chen, et al.

Algorithm 1 Calculate Lagrange Multiplier

1: Input: 𝑄𝑖 𝑗 , 𝑞 𝑗 , 𝐶 , interval [0,min𝑖 𝑗 (
𝑄𝑖 𝑗

𝑞 𝑗
)] and tolerance 𝜖

2: Output: Global optimal solution of Lagrange Multiplier 𝜆

3: Set 𝜆𝑙 = 0, 𝜆𝑟 = min𝑖 𝑗 (
𝑄𝑖 𝑗

𝑞 𝑗
), 𝑔𝑎𝑝 = +∞

4: while (𝑔𝑎𝑝 > 𝜖):

5: 𝜆𝑚 = 𝜆𝑙 + 𝜆𝑟−𝜆𝑙
2

6: Choose action 𝑗∗𝑚 by

{ 𝑗 : argmaxj (𝑄𝑖 𝑗 − 𝜆𝑚𝑞 𝑗), 𝑄𝑖 𝑗 − 𝜆𝑚𝑞 𝑗 ≥ 0}
7: Calculate the

∑
𝑖 𝑞 𝑗∗

𝑙
denoted by 𝐶𝑚

8: 𝑔𝑎𝑝 = |𝐶𝑚 −𝐶 |
9: if 𝑔𝑎𝑝 ≤ 𝜖 :

10: return 𝜆𝑚
11: else if 𝐶𝑚 ≤ 𝐶:

12 : 𝜆𝑙 = 𝜆𝑚
13 : else:
14: 𝜆𝑟 = 𝜆𝑚
15: end while
16: Return the global optimal 𝜆𝑚 which satis�es |∑𝑖 𝑞 𝑗∗

𝑙
−𝐶 | ≤ 𝜖 .

4.2.2 Request Expected Gain.
In e-commerce, the expected gain is usually de�ned as online per-

formance metric e.g. E�ective Cost Per Mile (eCPM), which could

directly indicate each individual request value with regard to the

platform. Four categories of feature are mainly used: User Pro�le,

User Behavior, Context and System status. It is worth noticing that

our features are quite di�erent from typical Click-through rate

(CTR) model:

• Speci�c target ad feature isn’t provided because we estimate

the CTR conditioned on actions.

• System status is included where we intend to establish the

connection between system and actions.

• The context feature consists of the inference results from pre-

vious modules in order to re-utilize the request information

e�ciently.

5 ARCHITECTURE
In general, DCAF is comprised of online decision maker and o�ine

estimator:

• The online modules make the �nal decision based on per-

sonalized request value and system status.

• The o�ine modules leverage the logs to calculate the La-

grange Multiplier 𝜆 and train an estimator for the request

expected value conditioned on actions by historical data.

5.1 Online Decision Maker
5.1.1 Information Collection and Monitoring.
This module monitors provide timely information about the system

current status which includes GPU-util, CPU-util, runtime, failure

rate, and etc. The acquired information enables the framework to

dynamically allocate the computation resource without exceeding

the budget by limiting the action space.

5.1.2 Request Value Estimation.
This module estimates the request’s 𝑄𝑖 𝑗 based on the features pro-

vided in information collection module. Notably, to avoid growing

Figure 2: Illusion of the system of DCAF. Request Value
Online Estimation module will score each request condi-
tioned on action 𝑗 through online features of which estima-
tor is trained o�line. Policy Execution module mainly takes
charge of executing the �nal action 𝑗 for each request based
on the system status collected by Information Collection and
Monitoring module, 𝜆 calculated o�line and 𝑄𝑖 𝑗 obtained
from previous module.

the system load, the online estimator need to be light-weighted,

which necessitates the balance between e�ciency and accuracy.

One possible solution is that the estimation of 𝑄𝑖 𝑗 should re-utilize

the request context features adequately, e.g. high-level features

generated by other models in di�erent modules.

5.1.3 Policy Execution.
Basically, this module assigns the best action 𝑗 to request 𝑖 by Equa-

tion (6). Moreover, for the stability of online system, we put forward

a concept calledMaxPower which is an upper bound for 𝑞 𝑗 to which
each request must subject. DCAF sets a limit on the MaxPower in
order to strongly control the online engine. The MaxPower is auto-
matically controlled by system’s runtime and failure rate through

control loop feedback mechanism, e.g. Proportional Integral Deriv-

ative (PID) [1]. The introduction of MaxPower guarantees that the
system can adjust itself and remain stable automatically and timely

when encountering sudden request spikes.

According to the formulation of PID, 𝑢 (𝑡) and 𝑒 (𝑡) are the control
action and system unstablity at time step 𝑡 . For 𝑒 (𝑡), we de�ne it
as the weighted sum of average runtime and fail rates over a time

interval which are denoted by 𝑟𝑡 and 𝑓 𝑟 respectively. 𝑘𝑝 , 𝑘𝑖 and 𝑘𝑑
are the corresponding tuned weights for proportional, integral and

derivative control. 𝜃 means a tuned scale factor for the weighted

sum between 𝑟𝑡 and 𝑓 𝑟 . Formally,

𝑢 (𝑡) = 𝑘𝑝𝑒 (𝑡) + 𝑘𝑖
𝑡∑

𝑛=1

𝑒 (𝑡) + 𝑘𝑑 (𝑒 (𝑡) − 𝑒 (𝑡 − 1)) (7)

DCAF: A Dynamic Computation Allocation Framework for Online Serving System DLP-KDD ’20, Aug 24, 2020, San Degio, CA

Algorithm 2 PID Control for MaxPower

1: Input: 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 ,𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟

2: Output:𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟

3: while (true):
4: Obtain 𝑟𝑡 and 𝑓 𝑟 from Information Collection and Monitoring
5: 𝑒 (𝑡) = 𝑟𝑡 + 𝜃 𝑓 𝑟
6: 𝑢 (𝑡) = 𝑘𝑝𝑒 (𝑡) + 𝑘𝑖

∑𝑡
𝑛=1 𝑒 (𝑡) + 𝑘𝑑 (𝑒 (𝑡) − 𝑒 (𝑡 − 1))

7: Update𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟 with 𝑢 (𝑡)
8: end while

5.2 O�line Estimator
5.2.1 Lagrange Multiplier Solver.
As mentioned above, we could get the global optimal solution of

the Lagrange Multipliers by a simple bisection search method. In

real case, we take logs as an o�ine request pool to search a best

candidate Lagrange Multiplier 𝜆. Formally,

• Sample𝑁 records from the logswith𝑄𝑖 𝑗 ,𝑞 𝑗 and computation

cost 𝐶 , e.g. the total amount of advertisements that request

the CTR model within a time interval.

• Adjust the computation cost 𝐶 by the current system status

in order to keep the dynamic allocation problem under con-

straint in time. For example, we denote regular QPS by𝑄𝑃𝑆𝑟
and current QPS by 𝑄𝑃𝑆𝑐 . Then the adjusted computation

cost 𝐶 is 𝐶 × 𝑄𝑃𝑆𝑟/𝑄𝑃𝑆𝑐 , which could keep the 𝑁 records

under the current computation constraint.

• Search the best candidate Lagrange Multiplier 𝜆 by Algo-

rithm (1)

It’s worth noting that we actually assume the distribution of the

request pool is the same as online requests, which could probably

introduce the bias for estimating Lagrange Multiplier. However,

in practice, we could partly remove the bias by updating the 𝜆

frequently.

5.2.2 Expected Gain Estimator.
In our settings, for each request,𝑄𝑖 𝑗 is associated with eCPM under

di�erent action 𝑗 which is the common choice for performance

metric in the �eld of online display advertising. Further, we build

a CTR model to estimate the CTR, because the eCPM could be

decomposed into 𝑐𝑡𝑟 × 𝑏𝑖𝑑 where the bids are usually provided by

advertisers directly. It is notable that the CTR model is conditioned

on actions in our case, where it is essential to evaluate each request

gain under di�erent actions. And this estimator is updated routinely

and provides real-time inference in Policy Execution module.

6 EXPERIMENTS
6.1 O�line Experiments
For validating the framework’s correctness and e�ectiveness, we

extensively analyse the real-world logs collected from the display

advertising system of Taobao and conduct o�ine experiments on

it. As mentioned above, it is common practice for most systems

to ignore the di�erences in value of requests and execute same

procedure on each request. Therefore, we set equally sharing the

computation budget among di�erent requests as the baseline strat-
egy. As shown in Figure 1, we simulate the performance of DCAF

in Ranking stage by o�ine logs. In advance, we make it clear that

all data has been rescaled to avoid breaches of sensitive commercial

data. We conduct our o�ine and online experiments in Taobao’s

display advertisement system where we spend the GPU resource

automatically through DCAF. In detail, we instantiate the dynamic

allocation problem as follow:

• Action 𝑗 controls the number of advertisements that need to

be evaluated by online CTR model in Ranking stage.

• 𝑞 𝑗 represents the advertisement’s quota for requesting the

online CTR model.

• 𝑄𝑖 𝑗 is the sum of top-k ad’s eCPM for request 𝑖 conditioned

on action 𝑗 in Ranking stage which is equivalent to online

performance closely. And𝑄𝑖 𝑗 is estimated in the experiment.

• 𝐶 stands for the total number of advertisements that are

requesting online CTR model in a period of time within the

serving capacity.

• Baseline: The original system, which allocates the same

computation resource to di�erent requests. With the baseline

strategy, system scores the same number of advertisements

in Ranking stage for each request.

Figure 3: Global optima under di�erent 𝜆 candidates. In
Figure 3, x-axis stands for 𝜆’s candidate; left y-axis repre-
sents

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 ; right-axis denotes the corresponding cost.

The red shadow area corresponds to the exceeding part of
𝑚𝑎𝑥

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 beyond the baseline. And yellow shadow area

is the reduction of
∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 under these 𝜆’s compared with

the baseline. Random strategy is also shown in Figure 3 for
comparison with DCAF.

Global optima under di�erent 𝜆 candidates. In DCAF, the

Lagrange Multiplier 𝜆 works by imposing constraint on the com-

putation budget. Figure 3 shows the relation among 𝜆’s magni-

tude,𝑚𝑎𝑥
∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 and its corresponding

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 under �xed

budget constraint. Clearly, 𝜆 could monotonically impact on both

𝑚𝑎𝑥
∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 and its corresponding

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 . And it shows that

the DCAF outperforms the baseline when 𝜆 locates in an appropri-

ate interval. As demonstrated by the two dotted lines, in comparison

with the baseline, DCAF can achieve both higher performance with

same computation budget (eCPM+3.7% in total) and same perfor-

mance with much less computation budget (computation budget

-49.0% in total). Moreover, the result of random strategy is displayed

for comparison with DCAF. Random strategy is the strategy that

DLP-KDD ’20, Aug 24, 2020, San Degio, CA Jiang, Zhang and Chen, et al.

we randomly cut down the advertisements quota for each request

for saving computing cost by 49%. With the same reduction of com-

putation resource, DCAF’s performance outmatches the random

strategy’s to a large extent.

Figure 4: Comparison of DCAF with the original system on
computation cost. In Figure 4, x-axis denotes the

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 ;

y-axis represents the
∑
𝑖 𝑗 𝑥𝑖 𝑗𝑞 𝑗 . For points on the two lines

with same x-coordinate, Figure 4 shows that DCAF always
perform as well as the baseline by much less computation
resource.

Comparison of DCAF with the original system on compu-
tation cost. Figure 4 shows that DCAF consistently accomplish

same performance as the baseline and save the cost by a huge mar-

gin. Furthermore, DCAF plays much more important role in more

resource-constrained systems.

Total eCPM and its cost over di�erent actions. As shown

by the distributions in Figure 5, we could see that DCAF treats each

request di�erently by taking di�erent action 𝑗 . And
∑

𝑖 𝑗 𝑄𝑖 𝑗/∑𝑖 𝑗 𝑞 𝑗 is

decreasing with action 𝑗 ’s which empirically show that the relation

between expected gain and its corresponding cost follows the law

of diminishing marginal utility in total.

6.2 Online Experiments
DCAF is deployed in Alibaba display advertising system since 2020.

From 2020-05-20 to 2020-05-30, we conduct online A/B testing ex-

periment to validate the e�ectiveness of DCAF. The settings of

online experiments are almost identical to o�ine experiments. Ac-

tion 𝑗 controls the number of advertisements for requesting the

CTR model in Ranking stage. And we use a simple linear model to

estimate the 𝑄𝑖 𝑗 . The original system without DCAF is set as base-

line. The online performances are evaluated by Revenue Per Mille

(RPM), an common metric in online display advertising. The DCAF

is deployed between Pre-Ranking stage and Ranking stage which

Figure 5: Total eCPM and its cost over di�erent actions. In
this �gure, x-axis stands for 𝜆 candidates and left y-axis rep-
resents

∑
𝑖 𝑗 𝑥𝑖 𝑗𝑄𝑖 𝑗 conditioned on action 𝑗 ; right-axis denotes

the corresponding cost. For each action 𝑗 , we sum over 𝑄𝑖 𝑗

for requests that are assigned action 𝑗 by DCAF.

is aimed at dynamically allocating the GPU resource consumed

by Ranking’s CTR model. Table 1 shows that DCAF could bring

improvement while using the same computation cost. Considering

the massive daily tra�c of Taobao, we deploy DCAF to reduce the

computation cost while not hurting the revenue of the ads system.

The results are illustrated in Table 2, and DCAF reduces the com-

putation cost with respect to the total amount of advertisements

requesting CTR model by 25% and total utilities of GPU resource by

20%. It should be noticed that, in online system, the𝑄𝑖 𝑗 is estimated

by a simple linear model which may be not su�ciently complex to

fully capture data distribution. Thus the improvement of DCAF in

online system is less than the results of o�ine experiments. This

simple method enables us to demonstrate the e�ectiveness of the

overall framework which is our main concern in this paper. In

the future, we will dedicate more e�orts in modeling 𝑄𝑖 𝑗 . Figure 6

shows the performance of DCAF under the pressures of online traf-

�c in extreme case e.g. Alibaba’s Singles Day sales. By the control

mechanism ofMaxPower, the online serving system can react to the

sudden rising of tra�c quickly. It makes the system back to normal

status by consistently keeping the fail rate and runtime at a low

level. It is worth noticing that the control mechanism of MaxPower
is superior to human interventions in the scenario that the large

tra�c arrives suddenly and human interventions inevitably delay.

Table 1: Results with Same Computation Budget

CTR RPM

Baseline +0.00% +0.00%

DCAF +0.91% +0.42%

DCAF: A Dynamic Computation Allocation Framework for Online Serving System DLP-KDD ’20, Aug 24, 2020, San Degio, CA

Table 2: Results with Same Revenue

CTR RPM Computation Cost GPU-utils

Baseline +0.00% +0.00% -0.00% -0.00%

DCAF -0.57% +0.24% -25% -20%

7 CONCLUSION
In this paper, we propose a noval dynamic computation allocation

framework (DCAF), which can break pre-de�ned quota constraints

within di�erent modules in existing cascade system. By deploy-

ing DCAF online, we empirically show that DCAF consistently

maintains the same performance with great computation resource

reduction in online advertising system, and meanwhile, keeps the

system stable when facing the sudden spike of requests. Speci�cally,

we formulate the dynamic computation allocation problem as a

knapsack problem. Then we theoretically prove that the total rev-

enue can be maximized under a computation budget constraint by

properly allocating resource according to the value of individual re-

quest. Besides, under some general assumptions, the global optimal

Lagrange Multiplier 𝜆 can also be obtained which �nally completes

the constrained optimization problem in theory. Moreover, we put

forward a concept called MaxPower which is controlled by a de-

signed control loop feedback mechanism in real-time. Through

MaxPower which imposes constraints on the range of action candi-

dates, the system could be controlled powerfully and automatically.

8 FUTUREWORK
DCAF is able to dynamically allocate resources according to the

value of each request. But we also noticed that DCAF may dis-

criminate among users. While the allocated computation budgets

varying with users, DCAF may leave a impression that it would

aggravate the unfairness phenomenon of system further.

Fairness has attracted more and more concerns in the �elds

of recommendation system and online display advertising. In our

opinion, the unfair problem stems from that all the approaches to

model users are data-driven. Meanwhile, most of systems create a

data feedback loop that a system is trained and evaluated on the

data impressed to users [5]. We think the fairness of recommender

system and ads system is important and needs to be paid more

attention to. In the future, we will analyse the long-term e�ect for

fairness of DCAF extensively and include the consideration of it in

DCAF carefully.

Besides, DCAF is still in the early stage of development, where

modules in the cascade system are considered independently and

the action 𝑗 is de�ned as the number of advertisements quota to

be evaluated in our experiments. Obviously, DCAF could work

with diverse actions, such as models with di�erent calculation

complexity. Meanwhile, instead of maximizing the total revenue

in particular module, DCAF will achieve the global optima in the

view of the whole cascade system in the future. Moreover, in the

subsequent stages, we will endow DCAF with the abilities of quick

adaption and fast reactions. These abilities will enable DCAF to

exert its full e�ect in any scenario immediately.

(a)

(b)

Figure 6: The e�ect ofMaxPower mechanism. In this exper-
iments, wemanually change the tra�c of system at time 158
and the requests per second increase 8-fold. Figure 6a shows
the trend of MaxPower over time and Figure 6b shows the
trend of fail rate over time. As shown in Figure 6, the Max-
Power takes e�ect immediately when the QPS is rising sud-
denly which makes the fail rate keep at a lower level. At the
same time, the base strategy fails to serve some requests, be-
cause it does not change the computing strategy while the
computation power of system is insu�cient.

9 ACKNOWLEDGMENT
We thanks Zhenzhong Shen, Chi Zhang for helping us on deep

neural net inference optimization and conducting the dynamic

resource allocation experiments.

DLP-KDD ’20, Aug 24, 2020, San Degio, CA Jiang, Zhang and Chen, et al.

REFERENCES
[1] Kiam Heong Ang, Gregory Chong, and Yun Li. 2005. PID control system analysis,

design, and technology. IEEE transactions on control systems technology 13, 4

(2005), 559–576.

[2] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-

Balter. 2018. RobinHood: Tail latency aware caching–dynamic reallocation from

cache-rich to cache-poor. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 195–212.

[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[4] Valeria Cardellini, Michele Colajanni, and Philip S Yu. 1999. Dynamic load

balancing on web-server systems. IEEE Internet computing 3, 3 (1999), 28–39.

[5] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. 2018. How

algorithmic confounding in recommendation systems increases homogeneity

and decreases utility. In Proceedings of the 12th ACM Conference on Recommender
Systems. 224–232.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[8] Michael Chow, Mosharaf Chowdhury, Kaushik Veeraraghavan, Christian Cachin,

Michael Cafarella, Wonho Kim, Jason Flinn, Marko Vukolić, Sonia Margulis,

Inigo Goiri, et al. 2016. Dqbarge: Improving data-quality tradeo�s in large-scale

internet services. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16). 771–786.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-

nect: Training deep neural networks with binary weights during propagations.

In Advances in neural information processing systems. 3123–3131.
[10] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.

In 14th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 17). 613–627.
[11] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep learning with limited numerical precision. In International Conference
on Machine Learning. 1737–1746.

[12] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and hu�man coding.

arXiv preprint arXiv:1510.00149 (2015).
[13] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[14] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade ranking for opera-

tional e-commerce search. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1557–1565.

[15] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,

Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, et al.

2018. Deep learning inference in facebook data centers: Characterization, perfor-

mance optimizations and hardware implications. arXiv preprint arXiv:1811.09886
(2018).

[16] Anthony Scott. 1955. The �shery: the objectives of sole ownership. Journal of
political Economy 63, 2 (1955), 116–124.

[17] L Slater Morton. 1950. Lagrange Multipliers Revisited. CCDP Mathematics 403
(1950).

[18] Xu Zhang, Siddhartha Sen, Daniar Kurniawan, Haryadi Gunawi, and Junchen

Jiang. 2019. E2E: embracing user heterogeneity to improve quality of expe-

rience on the web. In Proceedings of the ACM Special Interest Group on Data
Communication. 289–302.

[19] Guorui Zhou, Ying Fan, Runpeng Cui, Weijie Bian, Xiaoqiang Zhu, and Kun Gai.

2018. Rocket launching: A universal and e�cient framework for training well-

performing light net. In Thirty-Second AAAI Conference on Arti�cial Intelligence.
[20] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang

Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate

prediction. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 33.
5941–5948.

[21] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui

Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through

rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

	Abstract
	1 Introduction
	2 Related work
	3 Formulation
	4 Methodology
	4.1 Global Optimal Solution and Proof
	4.2 Parameter Estimation

	5 Architecture
	5.1 Online Decision Maker
	5.2 Offline Estimator

	6 experiments
	6.1 Offline Experiments
	6.2 Online Experiments

	7 Conclusion
	8 Future Work
	9 Acknowledgment
	References

