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ABSTRACT
Deep models have been pervasive for click-through rate (CTR) pre-
diction in modern recommender systems. However, their stellar
performance is at the cost of tremendous resource consumption,
which has received little attention so far. The core of this problem
is to trade off model complexity and accuracy. Motivated by the
successes of model pruning in computer vision, we propose an
Auto Pruning-based Architecture Search (APAS) pipeline, which
leverages reinforcement learning to learn the optimization policy
without hand-crafted heuristics. Our method takes a first step to-
wards filling the void in recommender system, which can directly
and efficiently optimize arbitrary performance metrics, e.g. through-
put and latency, in real-world systems.

Experimental results over two large-scale real-world datasets
show that our proposed method significantly outperforms tradi-
tional methods for different CTR model structures. The proposed
method has been widely deployed in Taobao Display Advertising
system. In production environments, APAS brings at least 10%
throughput improvement on various model structures in several
scenarios without significant negative effect for prediction accuracy.
We hope our experiences in developing such an automatic pruning
pipeline will be helpful for people interested in applying pruning
techniques to industrial systems.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Reinforcement learning.
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1 INTRODUCTION
Large-scale recommender systems and online advertising have been
pervasive and essential to build bridges between users and content
providers. In recent years, deep learning has gained considerable
interests in the field of personalized recommendation and proven
to be effective in internet enterprises, e.g, YouTube [3] and Amazon
[16].

However, the ever-growing model complexity has gradually hin-
dered online deployment in recommender system because of the
limit of computational resource. Under such a circumstance, trad-
ing off model complexity and its prediction accuracy becomes a
crucial problem. Hence, our main goal is to design an end-to-end
AutoML pipeline for real-world recommender systems. And the Au-
toML pipeline could automatically produce highly efficient model
structure without sacrificing its accuracy. Model pruning, a crucial
technique for model acceleration and compression, arouse our at-
tention greatly owing to its convincing performance in computer
vision.

In order to handle extremely large scale of users and items under
computational and storage constraints, industrial recommender
systems usually follow a multi-stage cascade architecture. There
are two typical parts that need to be highlighted, i.e., candidate gen-
eration and ranking. The former is aimed at retrieving thousands of
items from an extremely large candidate set [3, 13, 29–31], while the
latter is aimed at sorting the candidate set based on more accurate
predicted scores, e.g., click-through-rate (CTR) [27, 28]. Usually,
the models at these two stages have more complicated model struc-
tures than others, which give great challenges for online inference
engine. Hence, the trade-off between complexity and accuracy is
more crucial for these stages, especially for ranking stage. In this
paper, we mainly focus on CTR models for ranking, though our
methods can be extended to candidate generation models as well.

Besides, performance metrics, such as throughput and latency,
should be optimized directly in real-world recommender systems.
In computer vision, models typically take Convolutional Neural
Network (CNN) as their backbone architectures, which are compu-
tation intensive and graphical processing unit (GPU) friendly. In
these fields, it is usually enough to use FLOPs as an strong indi-
cator for both model compression and acceleration. However, the
foundation of network architecture in recommendation systems
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differs from what is mainly used in computer vision. For example,
researchers usually resort to recurrent neural network for mod-
elling behaviour sequence and attention mechanism for relevance
between user and target item. In these cases, FLOPs is not necessar-
ily equivalent with latency or throughput, thus invalid for model
acceleration in usual. As illustrated in Figure 1, the relationship
between latency and FLOPs for these selected model configurations
is not significant, especially for the interval from 1,000,000 FLOPs
to 3,000,000 FLOPs. Motivated by these observations, it is necessary
to optimize arbitrary metrics directly in real-world systems.

Moreover, we hope that the AutoML pruning pipeline doesn’t
increase either the complexity or the risk for the whole system.
For example, online learning and batch learning have dominated in
modern recommender systems for modeling the constantly chang-
ing data distribution. Consequently, real-world systems are always
in the states of releasing and deploying. Thus, pruning methods
based onweight inheritance cannot be easily deployed in real-world
system because they inevitably extend the online deployment pro-
cess. In contrast, other methods, e.g. Neural Architecture Search
(NAS), could be decoupled from the online deployment process.
NAS-like methods only require that the model structures can be
updated regularly, because they doesn’t focus on model weights
but structures by nature[19].

To address the challenges above, we propose Auto Pruning-based
Architecture Search (APAS), which tailored for models in real-world
recommender systems. APAS can automatically trade off model
speed and accuracy without introducing complexity and risk for
online deployment. Model pruning has been studied extensively
in computer vision and achieved great success for model deploy-
ment on mobile devices. However, researchers seldom set foot in
the context of real-world recommender systems because of the
highly complicated and dynamic production environment. Cur-
rently, it is challenging for online inference engine to satisfy the
requirements of throughput and latency set by the system because
of the explosion of model complexity. Hence, the importance of
model compression and acceleration cannot be overstated in mod-
ern recommender systems. The main contributions of our paper
are summarized as follows:

• We propose APAS pipeline, a industrial level solution to
model pruning. Arbitrary performance metrics (e.g., latency
and throughput) could be automatically optimized by APAS.
Moreover, the decoupling with model deployment process
makes APAS non-intrusive and lightweight. To the best of
our knowledge, it is the first attempt to systematically solve
the challenges of model pruning in real-world recommender
systems.

• We also propose APAS-light that can solve the pruning task
with much fewer iterations. The light version aims to fur-
ther address the scalability issue in industry, which greatly
reduce the number of trial-and-error explorations for model
structures.

• Through analysis on the by-product of APAS pipeline, we
reveal that APAS does not only achieve the balance between
computational resources and accuracy, but also provides a
useful tool for analyzing the performance of CTR models.

We conduct extensive experiments on two large-scale real-world
datasets, which show that our APAS pipeline outperforms existing
methods significantly for different CTR model structures. Online
A/B tests in Taobao Display Advertising platform also demonstrate
the effectiveness of APAS in production environment.

2 RELATEDWORKS
Deep CTR Model. In recent years, deep learning has been widely
acknowledged in many areas, such as computer vision, natural
language processing. Inspired by these successes, influence of deep
learning is also pervasive in the fields of information retrieval, rec-
ommender systems and online advertising. Especially, deep learn-
ing demonstrates its effectiveness when applied to click-through
rate (CTR) prediction [3, 13, 22, 29–31]. Compared with traditional
methods, deep CTR model can not only learn feature represen-
tations [1] from scratch but also model the user’s ever-changing
interests through its sophisticated model structure. These modules,
which are not GPU-friendly in usual, give great challenges to model
pruning.

Unstructured and Structured Pruning. Many works have
been done on model acceleration through network pruning, es-
pecially in computer vision [7, 9, 11, 14, 18, 21, 24–26]. One major
branch of network pruningmethods is unstructured pruning. Specif-
ically, unstructured pruning removes individual weight connections
from a network. Unstructured pruning has a long history, which
has been quite active for years in the setting of statistics for variable
selection [23]. More recently, Han et al. [7] propose to prune re-
dundant connections based on weight magnitude, which is further
integrated into their Deep compression pipeline [6]. In most recent
works, the lottery tickets theory [4] gains notable attention, which
claimed that model weights and sparsity are coupled with each
other for achieving competitive model with high sparsity. However,
even though unstructured pruning can introduce astonishing spar-
sity, it cannot lead to model inference speedup without dedicated
hardware/libraries. In contrast, structured pruning is more practical
by achieving model compression and acceleration at the same time.
Hu et al [10] propose to use channel pruning based on their pre-
defined metrics that evaluate the importance of each neuron after
activation. Thinet [20], on the other hand, greedily searches the
effective sub-network within the whole network by reconstruction
errors.

NeuralArchitecture Search.Neural Architecture Search (NAS)
[32] has been widely adopted in the real world. It doesn’t focus on
weight inheritance but model structure exploration. Liu et al [19]
have shown that model structure plays a central role in determining
the model prediction under some mild assumptions, rather than
delicate weight initialization. These observations prove the effec-
tiveness of NAS to a certain extent, especially in computer vision.
Hence, as what we stated earlier, NAS-like methods have the ad-
vantage of integration with recommender system. In general, NAS
can be divided into two categories - reinforcement learning-based
method and differentiable method. For reinforcement learning-
based method, researchers intend to reduce the search space for
model structures by reinforcement learning. AMC [8] uses rein-
forcement learning to generate compression ratio for each layer. It
speeds up the exploration by using the validation accuracy without
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Figure 1: Illustration of relationship between FLOPs and la-
tency. In deep CTR model, these metrics are usually not in-
terchangeable. We take Deep Interests Network(DIN) as an
example.We select some differentmodel configurations and
display the models with FLOPs in ascending order.

model fine-tuning as a delegate reward. Even though AMC can ac-
celerate the architecture exploration, its delegate rewards inevitably
introduce bias to the agent. Moreover, it is also questionable that
AMC prune the model based on weight magnitude. To address the
scalability issue, many works attempt to formulate the task in a dif-
ferentiable manner. DARTS [17] searches the space of pre-defined
operations through gradient descent by continuous relaxation of the
architecture representation. DMCP [5] models the channel prun-
ing as a Markov process and samples the best candidate by the
Markov process with learned transition probabilities. These meth-
ods usually use a differentiable surrogates for budget regularization.
However, we cannot simply assume that budget regularization is
continuous in real-world systems, let alone differentiable. In this pa-
per, we borrow ideas from one-shot pruning, searching for optimal
subnet structures within supernet. Compared with previous works,
we devise an pruning-based architecture search approach for real-
world recommender systems which is easy-to-deploy, automatic
and scalable.

3 METHODOLOGY
The APAS mainly follows one-shot pruning paradigm and applies
structured pruning for both model compression and acceleration.
NAS-like method has been adopted by APAS by considering the
online system’s complexity. Arbitrary metrics, e.g, latency and
throughput, can be incorporated into our APAS pipeline and opti-
mized directly based on reinforcement learning. Besides, APAS uses
a layerwise penalization strategy because of each layer’s different
contribution to these metrics and prediction. Moreover, we propose
APAS-light that remains almost the same performance as APAS
but could greatly decrease the number of trial-and-error model
structure searches.

3.1 Preliminaries
Deep CTR Model. In real-world systems, the data for CTR model
are usually formulated as a set of tuples {(𝑢, 𝑣,𝑦)}, where 𝑢 and
𝑣 stand for user 𝑢 ∈ 𝑈 and item 𝑣 ∈ 𝑉 respectively. 𝑦 is usually
binary which indicates whether 𝑢 interacts with 𝑣 , e.g. click in CTR
prediction.

𝑦 =

{
1, if 𝑢 interacts with 𝑣

0, o.w.
(1)

In CTR prediction, the CTR model aims to predict the likelihood
that user 𝑢 clicks on 𝑣 with a learned function 𝑓Θ (·) parameterized
by Θ. Usually, there are three main parts of raw features (u, v, c).
Here v denotes the feature vector for the target item and c is the
context feature from prediction requests. u is user side featurewhich
in usual contains some side information and a sequence of items
with which user u interacts in history. For deep CTR model, 𝑓Θ (·) is
based on deep neural network which learn feature representations
of raw features (u, v, c) from scratch and extract the structural and
temporal information within features through its architecture.

Reinforcement learning. Reinforcement learning intends to
solve sequential decision-making problems. At each timestep 𝑡 , an
agent observes an observation 𝑥𝑡 , take action 𝑎𝑡 and receives a
reward 𝑟𝑡 . An agent’s behaviors are defined by a policy 𝜋 , which
is a mapping from states to a probability distribution over actions
𝜋 : 𝑆 → 𝑃 (𝐴). In reinforcement learning, we usually model an
problem as a Markov decision process (MDP) with a state space
𝑆 , action space 𝐴, transition dynamics 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), and a reward
𝑟 (𝑠𝑡 , 𝑎𝑡 ). The final goal of reinforcement learning is to take actions
in an environment in order to maximize the cumulative reward
𝑅𝑡 =

∑𝑇
𝑖=1 𝛾

(𝑖−𝑡 )𝑟 (𝑠𝑖 , 𝑎𝑖 ) where 𝛾 ∈ [0, 1] is a discount factor that
determines how much the reinforcement learning agents concern
rewards in the distant future relative to those in the immediate
future.

3.2 Problem Definition
In general, we work on building a AutoML pipeline which could au-
tomatically trade off model speedup and accuracy. Mathematically,
we formulate the pruning problem as a constrained optimization
problem, where the objective is to maximize the model prediction
performance under the computation budget constraint.

argmax
𝜁

𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )

s.t. 𝑚𝜁 ≤ 𝐶 (2)

where 𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) is any prediction score on test data
sets e.g. AUC or GAUC.𝑚𝜁 is any performance metric𝑚 for the
model with structure 𝜁 and 𝐶 is the corresponding constraint re-
quired by real-world systems.Without loss of generality, we assume
that we maximize 𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) with𝑚𝜁 less than or equal
to 𝐶 . 𝜁 is the solution for the constrained optimization problem,
which denotes model structure in our specific problem. In our sce-
nario, we endeavor to search for the best candidate (subnet) within
unpruned model (supernet) by following the one-shot pruning par-
adigm. It is worth mentioning that arbitrary metrics are optimized
directly through our formulation, which is quite important for
model pruning in real-world systems.



DLP-KDD 2021, August 15, 2021, Singapore Rihan Chen, Yuchao Zheng, Guorui Zhou, Xinchen Luo, Jingwei Zhuo, Xianjie Qiao, Yunlong Xu, and Xiaoqiang Zhu

3.3 Overall Pipeline

Figure 2: Illustration of APAS pipeline. In APAS pipeline,
one-shot pruning repeat several times in order to interact
with DDPG agent. DDPG agent learns optimization policy
automatically during the interactions. Finally, APAS selects
best model structure from the model candidates with top-k
highest rewards

As shown in the Figure 2, APAS mainly follow one-shot pruning
paradigm which takes a trained model, prune it once and extract
an subnet from an supernet one. As the overall pipeline of APAS
described in Algorithm 1, the pipeline takes a trained model𝑀𝜁𝑓 𝑢𝑙𝑙

as an input, which is model𝑀 with model structure 𝜁𝑓 𝑢𝑙𝑙 . Then the
trained model𝑀𝜁𝑓 𝑢𝑙𝑙 enters the pruning stage, where DDPG agent
interacts with this module several times to learn the optimization
policy and automatically control the pruning process. We make it
clean that the pruning stage (line 6 in Algorithm 1) is a pluggable
module. In Section 3.6, Algorithm 1 will be substituted by APAS-
light pruning described in Algorithm 3 for exploring the model
structure solution space more efficiently. We describe the one-shot
pruning of APAS pipeline in Algorithm 2. The one-shot pruning
repeats several times for interactions with DDPG agent. For each
one-shot pruning, it will start from a trained model and add scaling
factor 𝜂 (initialized with 1) to each neuron’s output. The DDPG
agent will automatically generate layerwise soft-thresholding 𝜆’s
in order to control the model sparsity at coarse-grained neuron
level. The penalization will terminate till the performance metric
𝑚𝜁𝑒 meets the constraint at episode 𝑒 . Then, the training will be
continued for a while without penalizing the scaling factors. By
doing that, APAS can mitigate the prediction bias incurred by the
penalties added on neurons, which distinguish APAS from AMC.
Finally, we evaluate the pruned model with 𝑥𝑡𝑒𝑠𝑡 and 𝑦𝑡𝑒𝑠𝑡 and get
the prediction score ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ), e.g. AUC. To be noticed,

ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) is a delegate for 𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) due to
the penalization from DDPG agent. After several one-shot pruning
processes, APAS will select models with top-k highest rewards to
retrain from scratch, and then output the optimal model structure
with highest validation score 𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ).

Algorithm 1 APAS overall pipeline
1: Input: Trained Model𝑀𝜁𝑓 𝑢𝑙𝑙

2: Output: Best Model structure 𝜁
3: Initialize replay buffer 𝑅
4: Initialize model queue 𝑄
5: for 𝑒 in 1 . . . N:
6: Run Algorithm 2
7: Update DDPG agent
8: end for
9: Select models with top-k highest 𝑟𝑒 from model queue 𝑄
10: Retrain these models from scratch
11: Return model structure 𝜁 with highest 𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )

Algorithm 2 APAS one-shot pruning
1: Input:𝑀𝜁𝑓 𝑢𝑙𝑙 , 𝑒 , 𝑅, 𝑄
2: Add scaling factor 𝜂 𝑗 for the 𝑗th neuron 𝑛 𝑗
3: Agent generates layerwise soft-thresholding 𝜆𝑙,𝑒 upwardly.
4: while (𝑚𝜁𝑒 ≥ 𝐶):
5: Continue pruning by penalizing scaling factors.
6: end while
7: Get model𝑀𝜁𝑒 with𝑚𝜁𝑒 which satisfies the constraint
8: Fine-tune𝑀𝜁𝑒 for several iterations
9: Evaluate𝑀𝜁𝑒 and get ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )
10: Get 𝑟𝑒 = ˆ𝑆𝐶𝑂𝑅𝐸𝜁𝑒 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) − 𝛽 ×max(0,m𝜁e − C)
11: Append (𝑠𝑙,𝑒 , 𝑎𝑙,𝑒 , 𝑟𝑒 , 𝑠𝑙+1,𝑒 ) for each layer to replay buffer 𝑅
12: Append model structure 𝜁𝑒 to model queue 𝑄

3.4 Structure Pruning with Scaling Factor
Unbiased reward is one of the keys to make the DDPG agent
learn optimization policy correctly. However, the cost of retraining
pruned model with structure 𝜁 from scratch and getting unbiased
validation accuracy is almost prohibitive. Therefore, we decide to
use pruning-while-training paradigm to get a surrogate score effi-
ciently. Moreover, we desire that the pruning mechanism can be
end-to-end and easy-to-use, which can be included into the model
training without many modifications. Motivated by these consider-
ations, we resort to scaling factors [11] to put structured pruning
into effect. Scaling factor could scale the outputs of certain struc-
tures, such as neurons, groups or residual blocks, as illustrated in
Figure 3. The structure selection is achieved by the sparse penalties
added on these scaling factors. The APAS pipeline penalizes some
of the scaling factors into zeros through the sparsity regularizers
and prunes unimportant parts of models automatically. Formally,
we have:

min
w,𝜆

1
𝑁

𝑁∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (𝑥𝑖 ,𝑊 , 𝜂)) + 𝑅𝑠 (𝜂) (3)

where 𝑅𝑠 (𝜂) is the sparsity regularizer for scaling factors, which
is usually the lasso penalty. We summarized our main reasons for
using scaling factors as follow:

• The scaling factor method is data-driven, easy-to-use and
compatible with one-shot pruning.
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Figure 3: Illustration of scaling factor method. Scaling factor method scale the outputs of some specific structures,e.g.neurons,
by introducing scaling factors into the network. The model structures could be pruned at coarse-grained level, once some
scaling factors scale their corresponding outputs to zeros. As shown in Figure 3c, the scaling factor method falls into the
category of structured pruning. Hence, model compression and acceleration could be accomplished simultaneously by scaling
factor method.

• Scaling factor method is end-to-end in one training pass,
which allows us to use pruning-while-training paradigm.

• The sparsity of scaling factors can be directly influenced
by their corresponding soft-thresholding 𝜆’s, which can be
controlled by DDPG agent.

Figure 4: Illustration of iterative pruning in APAS. We im-
plement iterative pruning in each one-shot pruning, where
we mask parts of neurons every 𝑇 iterations.

Additionally, it is also desirable that the process of model prun-
ing can be stable in real-world systems, which means the sparsity
of model is controllable and without sudden change or spike. There-
fore, APAS also integrates conventional scaling factor method with
iterative pruning [2], which refers to model pruning in an iterative
way. Once every𝑇 iterations, APAS masks parts of model structure
which have scaling factors penalized to zeros. The iterative pruning
is quite practical in real world due to the following reasons:

• Iterative pruning can stabilize the pruning process, i.e. APAS
can guarantee that model sparsity monotonically increase
during one-shot pruning by iterative masking.

• As an important component of APAS light, iterative pruning
also provides a way to solve the scalability issue of model
pruning in industrial systems. In Section 3.6, it will be dis-
cussed in detail.

• Some off-the-shelf hardware or library has special require-
ments for model structures in order to get model acceleration,
e.g. the Nvidia Turing Core acceleration requires the weight
matrix dimension should be multiple of eight.

3.5 APAS with Reinforcement Learning
We leverage reinforcement learning to automatically control the
sparsity of scaling factors. Reinforcement learning empower the
APAS pipeline to optimize arbitrary metrics directly, e.g. latency
and throughput. In contrast, differentiable methods, such as DARTS
and DMCP, usually need delicate model design and differentiable
surrogates for budget constraints. In APAS, the sparsity of scal-
ing factors can be directly controlled by the magnitudes of their
corresponding soft-thresholding 𝜆’s in the pruning-while-training
process. Specifically, we adopt deep deterministic policy gradient
(DDPG) [15] method to search over continuous action space of
soft-thresholding 𝜆’s. By controlling over continuous actions, we
avoid an explosion of the number of discrete actions which usu-
ally existed in conventional reinforcement learning-based Neural
architecture search (NAS) method.

The State Space For each layer 𝑙 , we describe its state with 6
features which can reflect its distinctness and relevance to other
layers.

(l, op_type[l], FLOPs[l], FLOPspre [l], FLOPsrest [l], action[l − 1])
(4)

where l is the layer 𝑙 ’s index that indicates its position in the
whole model structure. op_type[l] represents the type of layer 𝑙 ,
e.g. fully connected layer and GRU. FLOPs[l] is the FLOPs of com-
putation involved in layer 𝑙 . FLOPspre [l] and FLOPsrest [l] are sums
of feed-forward FLOPs before and after layer 𝑙 . action[l − 1] is the
corresponding action for layer 𝑙 − 1 from DDPG agent. Notably, we
also include features that can reflect the layer 𝑙 ’s state in global,e.g.
FLOPspre [l] and FLOPsrest [l]. The reason is that each layer’s con-
tribution to the performance metrics is mutually influenced.

TheAction SpaceConventionally, reinforcement learning based
NAS methods search over a discrete action space. The pruning task,
especially for large and complicated models, usually suffers from
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an explosion of the number of discrete actions. Thus, these works
usually need lots of trial and error to explore such a large action
space.

In this work, we take each layer’s soft-thresholding 𝜆 as our
action in order to solve the scalability issue introduced by discrete
action space. The soft-thresholding 𝜆 has a continuous action space
that can be explored more efficiently with limited data sets.

DDPG Agent For each episode, the agent takes layerwise ac-
tions in a bottom-up manner. For example, at layer 𝑙 , the agent
receives the corresponding state 𝑠𝑙 and outputs the continuous ac-
tion 𝑎𝑙 which is the soft-thresholding 𝜆. Then, the agent will take
the successive action at layer 𝑙 +1 of which state includes the action
from layer 𝑙 . After the agent generates actions for all layers, APAS
will add the scaling factors to the unpruned model and start the
one-shot pruning process. The pruning process will follow iterative
pruning paradigm. Once every 𝑇 iterations, APAS will evaluate
the performance metrics during the masking pause. The process
will terminate once the model satisfies the performance metrics.
After pruning, APAS pipeline will continue training for several iter-
ations and evaluate the model with validation datasets to get score

ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ), e.g. AUC and GAUC. This score combined
with latency or throughput constitutes the final reward for this
episode. All layers share one reward in a episode, which means
each transition is (𝑠𝑙 , 𝑎𝑙 , 𝑅, 𝑠𝑙+1) where 𝑅 is the reward obtained
after APAS one-shot pruning. APAS share one reward among all
layers, because both ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 ) and𝑚𝜁𝑒 are decided by
the model as a whole not by any individual part alone.

In this work, we use DDPG, a model-free, off-policy actor-critic
algorithm, to control over the soft thresholding 𝜆. We construct our
exploration policy as follow:

𝜇 ′(𝑠𝑙 ) ∼ 𝜇 (𝑠𝑙 |𝜃𝜇 ) + N (5)

where 𝜇 (𝑠𝑙 |𝜃𝜇 ) is the actor policy generated by the actor network
based on layer 𝑙 ’s state. N is the noise process that help the agent
to explore in continuous action spaces. Following the way of DDPG,
we formulate empirical loss function for action-value function as:

𝐿(𝜃𝑄 ) = 1
𝑁

∑
𝑖

(𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 |𝜃𝑄 ))2 (6)

𝑦𝑖 = 𝑟𝑖 + 𝜂𝑄 (𝑠𝑖+1, 𝜇 (𝑠𝑖+1) |𝜃𝑄 ) (7)

wherewe sample a randomminibatch of N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1)
each time from replay buffer. We can simply define the reward as
any metric that evaluate the model prediction, e.g. AUC and GAUC.
In this way, we could keep training till the performance metric is
satisfied, and then, only use prediction scores as the reward. In this
manner, the agent will learn each layer’s importance towards the
final prediction. Alternatively, we could also apply a reward shap-
ing strategy [12] to incorporate the computation budget constraint.
To be specific, the action would incurs a penalty if the constraint is
violated defined in formulation (2) :

𝑟 = 𝑠𝑐𝑜𝑟𝑒 − 𝛽 ×max(0,m𝜁 − C) (8)

Even thought this strategy is naive and simple, it enables the
DDPG agent to encourage higher prediction score, and meanwhile,
penalize the model to arrive at the constraint.

3.6 APAS-light

Figure 5: Illustration of the interactions of DDPG agent in
APAS-light pipeline. APAS-light requires less training iter-
ations for producing the optimal model structure. In APAS-
light pipeline, DDPG agent interacts with APAS during the
iterative pruning instead of repeating one-shot pruning sev-
eral times.

We propose APAS-light to further accelerate the pruning process,
which can complete the pruning task with much fewer iterations.
Originally, we formulate model pruning as an single-step decision
making problem. Namely, each episode of the APAS pipeline re-
ceives only one reward after each APAS one-shot pruning finished.
Even though the reward in this way is quite unbiased, it is so de-
layed and sparse that require several one-shot pruning processes
to train the DDPG agent sufficiently. Owing to the pruning-while-
training paradigm, we could actually consider the transition dynam-
ics and discretize the one-shot pruning process, which can enrich
the samples and solve the problem of reward’s sparsity. We describe
APAS-light pruning pipeline in Algorithm 3, which replaces Algo-
rithm 2 in Algorithm 1. In detail, the APAS pipeline is built upon
iterative pruning and l1 penalization for scaling factors. Hence, we
can discretize one episode during the masking pause of iterative
pruning, and append several transitions, i.e. (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) to replay
buffer in one training pass. APAS-light can finish the pruning with
much fewer training passes. The trial and error will terminate once
the interactions with DDPG agent are sufficient enough to learn
the pruning policy well. In real-world system, the iterative pruning
process can actually provide sufficient samples to train the DDPG
agent where models are usually trained in distributed systems with
large volume of data.



Practice on Pruning CTR Models for Real-world Systems DLP-KDD 2021, August 15, 2021, Singapore

Algorithm 3 APAS-light pruning
1: Input:𝑀𝜁𝑓 𝑢𝑙𝑙 , 𝑒 , 𝑅, 𝑄
2: Add scaling factor 𝜂 𝑗 for each neuron 𝑛 𝑗
3: Initialize 𝑡 = 0
4: while (𝑚𝜁𝑒𝑡

≥ 𝐶):
5: if 𝑡%𝑇 == 0:
6: Mask neurons and get 𝑀𝜁𝑒𝑡

.
7: Fine-tune 𝑀𝜁𝑒𝑡

for several iterations
8: Evaluate 𝑚𝜁𝑒𝑡

and get ˆ𝑆𝐶𝑂𝑅𝐸𝜁 (𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )
9: Append (𝑠𝑙,𝑒𝑡 , 𝑎𝑙,𝑒𝑡 , 𝑟𝑒𝑡 , 𝑠𝑙+1,𝑒𝑡 ) to replay buffer 𝑅
10: Append 𝜁𝑒𝑡 to model queue 𝑄
11: Agent generates layerwise soft-thresholding upwardly.
12: Update DDPG agent
13: else:
14: Continue pruning by penalizing scaling factors.
15: 𝑡+ = 1
16: end while

4 EXPERIMENTS
4.1 Datasets, Models and Experimental Setup
Amazon Dataset contains product reviews and metadata from
Amazon. We use the Books subset of Amazon dataset which is
comprised of user behavior logs between May 1996 and July 2014.
We take all the user reviews as user click behaviors and construct
user behavior sequences through reviews as well. All behavior
sequences are truncated at length 100.

Taobao Dataset is a collection of user behaviors from Taobao’s
recommender system. The dataset contains different types of user
behaviors including click, purchase. User behavior sequences from
nearly one million users are contained in the dataset. We take click
as the target and construct user behavior sequences through clicks
as well. All behavior sequences are truncated at length 200.

Wide and Deep has two main modules: linear model and deep
model. Wide and deep model jointly trains wide linear models and
deep neural networks to combine the benefits of memorization and
generalization for recommender systems.

Deep Interest Network (DIN) is dedicated to adaptively learn
the representation of user interests from historical behaviors with
respect to a target item. DIN widely adopts attention mechanism
to capture user’s multi-modal interests.

Deep Interest Evolution Network(DIEN) derives from DIN.
Besides, it contains an interest evolving layer to capture interest
evolving process. In DIEN, both attention mechanism and gate
recurrent unit(GRU) are widely used to further model the user’s
behaviour sequence.

Experimental Setup. We use Adam solver and apply exponen-
tial decay with the learning rate starting at 0.001 and decay rate of
0.5 for model optimization. Every model’s layout exactly follows its
original source code in github. And we evaluate the model predic-
tion by AUC, which is widely used in real-world systems. For both
APAS and APAS-light pipelines, all scaling factors are initialized
to be 1. For reinforcement learning, the continuous action for each
layer is in the range of [0, 1]. Both action network and critic net-
work have two fully connected layers, each with 300 neurons. We

use the soft target updates with 𝜏 = 0.01 and train the action/critic
network with batch size 64. The DDPG agent first warms up by 50
episodes with a constant noise 𝜎 = 0.5, and then continues training
by 150 episodes with exponentially decayed noise 𝜎 . In APAS-light
pipeline, we shorten these two processes correspondingly because
samples can be enriched during iterative pruning.

4.2 Results on Public Datasets
As shown in Table 1, FLOPs is set as the constraint in this exper-
iment. All the pruned model only need 50% FLOPs of computa-
tion for inference compared with the unpruned model. We can see
that APAS outperforms AutoML for Model Compression (AMC)
and naive scaling factor pruning based on proximal gradient(PG).
Moreover, our pruned model even outperforms the unpruned one,
which illustrates the hand-crafted model structure is suboptimal
and redundant in this case. Besides, the APAS-light can also achieve
comparable performance with APAS.

As shown in Table 2, we set latency as the constraint in this ex-
periment. We decrease the latency for Wide and Deep model(W&D)
and Deep Interest Network(DIN) by 5% and 10% respectively. When
we set the latency as the constraint, it shows that APAS is still
superior over AMC and PG method. Notably, pruning based on
latency is much more challenging than on FLOPs. For example,
even though we decrease latency by 5% for W&D model, we’ve
already cut down 90% FLOPs correspondingly.

Table 1: Model performance (AUC) on public datasets –
FLOPS

Dataset Model No
prune

AMC PG
prune

APAS APAS
light

Amazon
W&D 0.7731 0.7673 0.7684 0.7732 0.7751
DIN 0.7901 0.7865 0.7791 0.7910 0.7873
DIEN 0.8476 0.8424 0.8409 0.8513 0.8505

taobao
W&D 0.8690 0.8640 0.8660 0.8665 0.8669
DIN 0.8793 0.8715 0.8613 0.8875 0.8773
DIEN 0.9057 0.8948 0.8994 0.9053 0.9034

Table 2: Model performance (AUC) on public datasets –
Latency

Dataset Model No
prune

AMC PG
prune

APAS APAS
light

Amazon W&D 0.7731 0.7605 0.7579 0.7625 0.7598
DIN 0.7901 0.7839 0.7441 0.7911 0.7892

taobao W&D 0.8690 0.8595 0.8593 0.8637 0.8621
DIN 0.8793 0.8700 0.8632 0.8765 0.8736

4.3 Online A/B Testing
We deploy APAS pipeline in a world-leading display advertising
system, where we optimized a bunch of model structures at differ-
ent stages. Real-world recommender system follows a multi-stage
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cascade architecture, which usually consist of candidate generation,
pre-ranking, ranking ,etc. We apply APAS to models at pre-ranking
and ranking stages. These stages are responsible for CTR prediction,
where models are usually most complicated in the whole system.
We follow the APAS pipeline by setting GAUC as the objective.
After model pruning, the change of GAUC is almost trivial for any
model at pre-ranking stage and ranking stage. For online A/B test-
ing, we evaluate the models by effective cost per mille (eCPM) and
CTR directly. Online A/B testing is performed from 2020-08-12 to
2020-09-12 in two commercial scenarios. In one scenario where the
deep CTR model consists of several fully-connected layers. Our
pruned CTR model in ranking modules improves the throughput by
40%, eCPM by 2.25%, CTR 0.91% and decrease the latency by 30%. In
another scenario, the deep CTR model contains multi-heads atten-
tion layers, gate recurrent unit (GRU) layers and fully-connected
layers. Our pruned CTR model in ranking modules improves the
throughput by 10%, eCPM by 0.36%, and decease the latency by
10%. For model in pre-ranking, the pruned CTR model improves
the throughput by 20%, decrease the latency by 20% and maintain
the same eCPM and CTR. In production environment, APAS brings
about an improvement to the performance of model inference sig-
nificantly. Moreover, as shown in online A/B testing, APAS can
even bring higher eCPM’s and and CTR’s, which demonstrates that
model pruning can contribute to themodel prediction by reasonably
controlling the model complexity.

4.4 Model Structure Analysis

Figure 6: Illustration of layerwise FLOPs and actions for
DIEN model on Amazon dataset. APAS penalizes the atten-
tion layers and RNN layers with relatively higher magni-
tude.

The layerwise actions from DDPG agent could provide us some
insights to analyse model structure. As illustrated in previous sec-
tions, these actions are actually the results of trading off between
model complexity and accuracy learned by the agent. For example,
some layers can be penalized to a much greater extent because
of their redundancies. Others can probably receive mild or even
no penalization because they are the important parts for model

Figure 7: Illustration of the coefficient of variation for the
attention layer‘s outputs. We analyse all samples from test
dataset, predict through the pruned model and collect the
outputs of attention layer. The outputs with lower variance
account for the majority.

prediction. Hence, APAS pipeline can be taken as a powerful tool
for model structure analysis.

In Figure 6, we take as an example that DIEN model on Amazon
dataset. From the view of model complexity, we show the relation
between layerwise FLOPs and its corresponding actions generated
by APAS agent. In this analysis, we use FLOPs as the constraint. In
DIEN model, the FLOPs of attention layers account for the largest
proportion of the total amount. The APAS agent automatically as-
signs this part with higher penalization by increasing themagnitude
of soft-thresholding 𝜆.

Besides, we also analyze the importance of attention layers to-
wards model prediction in Figure 7. We use coefficient of variation
to analyze the outputs of attention layers, which is defined as the
ratio of the standard deviation to the mean. In recommender system,
the attention mechanism is used to capture the relevance between
user behaviour sequence and target item. It plays an important
role in model prediction when different parts of user behaviour
sequence have different degrees of relevance with the target item.
In this work, we specifically analyse the output of second attention
layer which receives the greatest penalization from APAS pipeline.
We calculate the coefficient of variation for the weight vector gen-
erated by second attention layer to reveal its deviation from mean
for each sample. The samples with lower coefficient of variation ac-
count for the majority, which means that these weights are almost
equal to the average in these cases. In other words, the attention
mechanism doesn’t have much influence on the majority of samples
as it almost assigns same weight for each state. Hence, the attention
mechanism is probably redundant for this particular dataset when
trading off between model complexity and prediction. In this case
study, we empirically show that APAS pipeline can automatically
learn which parts of the model contains more redundancy, and
prune the unnecessary modules according to the rewards. More-
over, APAS actually provides us with a tool to analyze the each
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layer’s performance because the actions generated by DDPG agent
can reveal the balance between model speedup and accuracy.

5 CONCLUSION
In this paper, we device an end-to-end AutoML pipeline, named
APAS, in real-world systems, which could automatically trade off
model speedup and accuracy. The APAS has been deployed in a
world-leading display advertising system, where various model
structures in several scenarios could be pruned by APAS pipeline
without loss of accuracy. Besides, by leveraging reinforcement learn-
ing, arbitrary metrics can be introduced into APAS pipeline and
optimized directly, which is vital to real-world systems. Moreover,
we also propose APAS-light pipeline that can achieve comparable
performances with significantly less computation.

In the future, we will empower APAS pipeline with the ability
to optimize real-world models comprehensively. At current stage,
APAS pipeline can only optimize the model inference through struc-
tured pruning. However, the bottleneck for serving performance
cannot be simply attributed to computing overload. Model pruning
can only solve part of the problem, when the model performance is
bounded by computation. In real-world systems, many techniques
like batching, caching, kernel fusion can also improve the model
serving performance. All these techniques now requires domain
expertise to put into use. In principle, these human heuristics can be
substituted by learning-based optimization policy as well. We will
further develop APAS pipeline with more actions and optimization
policy to integrate with these techniques subsequently.
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