
Incremental Learning from Asynchronously Trained Neural
Networks in e-Commerce Search Ranking

Zhipeng Xu
Guoyu Tang
Dadong Miao

xuzhipeng19@jd.com
tangguoyu@jd.com
miaodadong@jd.com

JD.com
Beijing, People’s Republic of China

Lin Liu
Sulong Xu

liulin1@jd.com
xusulong@jd.com

JD.com
Beijing, People’s Republic of China

Bo Long
Yun Xiao

Yunjiang Jiang
bo.long@jd.com
xiaoyun1@jd.com

yunjiangster@gmail.com
JD.com Silicon Valley R&D Center

Mountain View, CA, USA

ABSTRACT
Asynchronous distributed learning is widely used in industry-scale
neural net training. Incremental learning is another popular ma-
chine learning procedure used in time-sensitive business domains
such as personalized e-commerce search, where millions of new
items and user interactions enter the system on a daily basis.

Despite both being effective, time-tested learning paradigms,
there has been surprisingly no study on how well they perform
when combined in an end-to-end learning framework. In thiswork,
we carry out experiments to examine how these two techniques in-
teract.The first surprising observation is sharpmodel quality drops
across all metrics, when a model is warm-started from parameters
saved from an asynchronously trained base model.

We analyze the implementation of the popular parameter server
architecture, and make some hypothesis in order to make sense of
the observation, as well as provide practical solutions to solve or
mitigate the problem. We show that random re-initialization of se-
lect groups of weights, as well as proper mixture of old and new
data, allow the model to hill-climb back to metrics achieved before
restarting, and sometimes exceed earlier peaks. We also discuss
how these techniques help with incremental learning that is criti-
cal for result freshness in e-commerce search ranking.
ACM Reference Format:
Zhipeng Xu, Guoyu Tang, Dadong Miao, Lin Liu, Sulong Xu, Bo Long, Yun
Xiao, and Yunjiang Jiang. 2021. Incremental Learning fromAsynchronously
Trained Neural Networks in e-Commerce Search Ranking. In Proceedings
of DLP-KDD 2021. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, deep learningmodels have gradually taken the cen-
ter stage of personalized search and recommendation ranking sys-
tems. Despite its effectiveness, deep learning model often takes an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLP-KDD 2021, August 15, 2021, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

exorbitant amount of time to train compared to its predecessors,
especially when compared with classical methods such as gradi-
ent boosted decision trees, or the family of linear methods. On the
other hand, newly logged user interaction data comes in on a daily
or even hourly basis. Missing out on the latest data can signifi-
cantly hamper model prediction accuracy and user experience.

In this work, we attempt to overcome both challenges through
the use of asynchronously distributed training for the base model
and incremental learning for newly arrived data. In the process,
however, we discover that asynchrony and incremental learning
do not work well together. In fact, naively warm-starting from
the asynchronously trained base model invariably causes an initial
sharp drop in test metrics, which often never recovers to its start-
ing value. This is demonstrated on both an in-house e-commerce
search dataset as well as the public Amazon review dataset.

We provide some preliminary explanation as to why this occurs,
as well as the following two effective techniques to mitigate this
problem:

• Randomly re-initialize a subset of the model parameters,
typically the last few layers of the final DNN network.

• Mix the old and new data during incremental training.

While these two simple methods do not address the symptom
directly, they successfully reconcile asynchronous (pre-)training
and incremental model update in a large scale industrial setting,
bringing about significant gains in both offline and online metrics.

2 RELATEDWORK
2.1 Incremental Learning
Incremental learning [9] offers a practical solution to bridge the
gap between training time andmodel freshness.The idea is to train
a base model on a large amount of data, followed by incremental
updates when new data gradually becomes available. The second
phase can typically be executed quickly, due to small data size. The
increment step can often piggyback from the near optimal base
model and reach new heights, thanks to the newly available data
unseen by the base model.

In a fast-paced setting like e-commerce search ranking, where a
large fraction of new items replace old ones on a daily basis, train-
ing speed is critical to the core business. In fact, training a model
from scratch is often considered too inefficient. Thus incremental

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLP-KDD 2021, August 15, 2021, Singapore Zhipeng, et al.

training, where an earlier version of the model continues to train
on newly available data, has become a popular idea.

In practice, however, incremental training of a neural net presents
an array of challenges. For instance, it is critical that one stops
the base model before it starts to overfit on test dataset (Figure 1),
which is common for deep models. A common approach is to mon-
itor some core metric (such as ROC AUC [2]) on a holdout valida-
tion dataset, and pick the best model checkpoint accordingly.

Catastrophic forgetting [5] is another common issue with incre-
mental learning, whereby the model loses performance on old data
after learning from new data. In e-commmerce search and recom-
mendation, this can manifest itself in data distribution shift due to
seasonality or other cyclic factors. Brain-inspired techniques such
as regularization [8] and compressed data replay [7] have been suc-
cessful in overcoming this issue. Other neural network specific
remedies such as selective weight adjustment [14] and class re-
balancing [3] have also been proposed. The last two techniques
are closely related to our proposed methods.

Figure 1: Incremental Training Pipeline. Best model check-
points are selected according to evaluator metric.

2.2 Asynchronous Distributed Training
While incremental learning reduces the training time on newly
acquired data, the training of a high quality base model can still
be time-consuming. To address this, various distributed training
strategies are often adopted, which can be roughly divided into
two camps: synchronous and asynchronous. While deterministic
synchronous training (DST) with powerful specialized hardware
advances have taken a lead in many domains [4], asynchronous
training (AST) still plays an important role in large scale deep
learning, especially when the prevailing compute resource comes
in the form of heterogeneous CPU clusters.

In a typical industrial setting, CPU-powered machines come in
many varieties. Training strategies such as those based on parame-
ter servers are highly tolerant to such device heterogeneity, while
producing close to linear speed up in training time.

A popular AST strategy, first proposed in the early 2000 [12],
spawns a set of processes called parameter servers to store a cen-
tralized copy of all the model parameters. The remaining worker

processes run the actual training computation, while exchanging
data with the parameter server asynchronously. While this has
been empirically demonstrated to work similarly to DST in a va-
riety of settings [6], we show that warm-starting from an asyn-
chronously trained base model can result in sharp validation met-
rics drop.

Much effort has been devoted to studying performance of AST
under various parameter settings [6]. For instance, [1] shows that
both larger batch size and more workers cause performance degra-
dation. One obvious reason for lower accuracy under AST, espe-
cially when the number of workers is large, is the so-called stale
gradient problem: the gradient applied to the centralized weight
update may be a few steps behind the latest. [13] shows that care-
ful tuning of learning rate and batch size can mitigate the stale-
ness problem. Other works such as [10], [15], and [11] introduce
staleness-aware gradient update algorithms to address this prob-
lem more systematically, at the expense of higher memory usage,
needed to store the staleness for each weight.

3 ISSUES WITH INCREMENTAL TRAINING
We take 30 days of search log𝐷 = 𝐷 (30) as the basic training data.
Our main neural network is an improved version of DIN [16] (at-
tention applied to user historical interactions followed by anMLP),
trained under parameter server strategy with 30 workers and lazy
ADAM optimizer. Ideally a newmodel should be trained every day
on the latest 30 days. Training a newmodel from scratch, however,
takes too long (3-5 days).Thus it is a natural idea to warm-start the
model𝑀𝑡+1 from the previous day 30 day model𝑀𝑡+0. Figure 5 il-
lustrates this moving window training schedule.

For optimal model generalization, we always keep the model
at the optimal step 𝑠 with the highest evaluation metric (Session
AUC) on a holdout set 𝐷𝑡+2 (1), 2 days ahead of the training set, in
anticipation of the T+1 incremental training data.

Table 1 shows how the number of workers during base model
training affects the final converged test AUC; the case of single
worker synchronous training takes too long and is thus omitted.

Table 1: Number of workers for base model training

Worker Count Session AUC@Step Time Cost
10 0.8684@0.714m 20h 7m
30 0.8677@0.865m 9h 49m

We now turn to the issue of warmstart fragility. The green All
Params Warmstart curve in Figure 4 represents the naive strat-
egy of initializing all weights in𝑀𝑡+1 fromweights in𝑀𝑡+0 trained
to convergence. Compared to all the other strategies, including
training from scratch (All Params Init), we see a clear initial drop
in test AUC, which hardly recovers for many subsequent steps.

Figure 3 shows a more extreme case of metric drop when the
model is warm-started from the peak of an asynchronously trained
base model. In this case we used the public Amazon review dataset.
Sub-figure 3a shows the test AUC for the base model trained from
scratch.Thehighest recordedAUCoccurs at step 6.5m. Sub-figure 3b
shows the same AUCmetric evaluated on the same test dataset, for
a model warm-started from the base model at the step 6.5m. The

Incremental Learning from Asynchronously Trained Neural Networks in e-Commerce Search Ranking DLP-KDD 2021, August 15, 2021, Singapore

sharp AUC drop in the latter is hard to miss, and to the best of our
knowledge has not been studied at all in the literature.

To understand this anomaly, note first that at any given point
of time, different workers may have different versions of the model
parameters. In particular they can be different from themodelweights
saved to disk. Thus there is no guarantee that the re-initialized
model𝑀𝑡+1 (𝑠) can exactly reproduce theworker states of𝑀𝑡+0 (𝑠).
See Figure 2 for an illustration of theweight disagreement phenom-
enon duringmodel checkpoint saving andwarm-start.Thus we hy-
pothesize that the weight disagreement among different workers
help prevent over-fitting on holdout set, especially near the point
of convergence. During warm-start, however, these weights are
forced to coalesce, which could precipitate over-fitting.

Figure 2: Inconsistent weights on different workers and pa-
rameter server

4 PROPOSED METHOD AND EXPERIMENTS
An obvious remedy to the problem of undesired weight synchro-
nization duringwarm-start is to save not only theweights from the
chief worker, but all the workers. This would require much more
disk space and significantly reduce worker training efficiency.

Insteadwe take an indirect approach, by randomly re-initializing
a small subset of the weights from 𝑀𝑡+0 (𝑠), which has the im-
mediate effect of reducing test AUC back to the starting level of
𝑀𝑡+0 (0), since the predictions are essentially random. Test AUC
climbs back up very quickly (Figure 4), however, since most of the
weights were already learned.

Table 2 compares different random re-initialization strategies
during incremental warm-start.We record the highest sessionAUC
on a holdout test dataset for each experiment, as well as the num-
ber of steps (since warm-starting) taken to reach the value.

• All Params Init (old) is essentially the base model without
warm-start.

(a) All Params Init(old) (b) All Params Warmstart

(c) Last layer Warmstart (d) Last 2 layers Warmstart

Figure 3: Test AUC for Amazon Dataset Experiments

Figure 4:Warm-start parameter initialization strategies.The
“All Params Init” curves are shifted horizontally to match
the “Warmstart” curves’ starting step at 0.

• All Params Init uses 29d of old data + 1d of new data.
• All ParamsWarmstart stands for naive warm-start where
all parameters of the base model are preserved.

• Finally the last 2 settings, Last layer Warmstart and Last
2 LayersWarmstart, randomly re-initialize a subset of the
MLP layers.

Generally, more randomly initialized layers lead to better test
metrics but longer convergence steps. The best setting, randomly
initializing the last MLP layer, cuts down training time to a quarter
of non-incremental training.This has been confirmed on the public
Amazon dataset experiments as well. As show in Figure 3c and 3d,
randomly re-initializing the last 1 or 2 layers helps mitigate or elim-
inate the initial AUC drop, while achieving higher peak AUC than
the base model (Figure 3a) or the naive strategy of warm-starting
all weights (Figure 3b).

Table 3 shows the effect of mixing old data with the latest day of
incremental training data. Data is shuffled uniformly after mixing.
Though the base model has seen the old 30d data several times,
adding more old data during warm-start gives it more time to re-
cover from damage due to random re-initialization of the last layer.

DLP-KDD 2021, August 15, 2021, Singapore Zhipeng, et al.

Figure 5: Daily Incremental Training Schedule

With the best combination of random initialization strategy and
data mixture ratio, incremental learning achieves parity in session
AUC with same day end-to-end trained model (All Params Init),
or 0.45% gain over previous day model, at only a quarter of their
training time.

Compared with training from scratch (All Params Init old and
new), which takes more than 31 hours, incremental training with
randomly initialized last layer only takes 8 hours, making daily
model refresh possible. Indeed, it takes another 1 hour to perform
offline evaluation, online validation, and model reload. As depicted
in Figure 5, to decide whether to push the model to the online
search system,we evaluate the performance of current day’smodel
and previous model using the same test set at𝑇 + 2 where T repre-
sents the last date of the base model’s training set.

As shown in Table 4, over a period of 7 days of online A/B exper-
iments, user conversion rate (UCVR) and sales proceeds (GMV) are
both significantly improved over the base static model, thanks to
the freshness of incremental training data. Here UCVR refers to the
number of purchases made per user. GMV stands for Gross Mer-
chandise Value, which is the total sales revenue among the users
in the experimental bucket. Both of these online metrics are com-
puted on a daily basis and averaged over the duration of the exper-
iment. Even 0.1% relative improvement in these metrics translates
directly to tens of millions of dollars in revenue, once deployed to
full production traffic.

Table 2: Random re-initialization strategy for warm-start

Init Strategy Session AUC@Step Time Cost
All Params Init (old) 0.8639@2.936m 32h 26m

All Params Init 0.8683@2.848m 31h 8m
All Params Warmstart 0.8676@0.998m 10h 58m
last layer Warmstart 0.8684@0.714m 8h 7m
last 2 layers Warmstart 0.8684@1.231m 14h 23m

Table 3: Different mixture of training data

Model Training Data Session AUC@Step Time Cost

random
last layer
(DIN)

new 1d+old 29d 0.8684@714.4k 8h 7m
new 1d+old 6d 0.8652@127.9k 1h 47m
new 1d+old 4d 0.8659@208.5k 2h 21m
new 1d+old 2d 0.8641@335.8k 3h 54m

Table 4: Gains in online AB test

Metrics Relative Gains p value
GMV 0.59% 8.41e-2
UCVR 0.43% 1.51e-2

5 CONCLUSION
We make the novel observation that warm-starting from an asyn-
chronously trained base model suffers from severe initial drop in
testmetrics.We present some plausible explanation for this strange
phenomenon and provide two simple remedies to this practically
important situation. The random partial weight re-initialization
and data mixing strategies mitigate or eliminate the initial drop
and help reduce training time to a quarter of conventional model
refresh, while maintaining or exceeding earlier evaluation metrics,
satisfying the requirement for daily model update.

REFERENCES
[1] O. Bhardwaj and G. Cong. Inefficiency of stochastic gradient descent with larger

mini-batches (and more learners). 2016.
[2] A. P. Bradley. The use of the area under the roc curve in the evaluation of ma-

chine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.
[3] F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari. End-to-

end incremental learning. In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[4] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[5] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical in-
vestigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211, 2013.

[6] S. Gupta, W. Zhang, and F. Wang. Model accuracy and runtime tradeoff in dis-
tributed deep learning: A systematic study. In 2016 IEEE 16th International Con-
ference on Data Mining (ICDM), pages 171–180, 2016.

[7] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan. Remind your neural
network to prevent catastrophic forgetting. In European Conference on Computer
Vision, pages 466–483. Springer, 2020.

[8] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming cata-
strophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[9] V. Losing, B. Hammer, and H. Wersing. Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing, 275:1261–1274,
2018.

[10] H. B. McMahan and M. Streeter. Delay-tolerant algorithms for asynchronous
distributed online learning. 2014.

[11] A. Odena. Faster asynchronous sgd. arXiv preprint arXiv:1601.04033, 2016.
[12] A. Smola and S. Narayanamurthy. An architecture for parallel topic models.

Proceedings of the VLDB Endowment, 3(1-2):703–710, 2010.
[13] A. Srinivasan, A. Jain, and P. Barekatain. An analysis of the delayed gradients

problem in asynchronous sgd. 2018.
[14] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental

learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[15] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware async-sgd for distributed
deep learning. arXiv preprint arXiv:1511.05950, 2015.

[16] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai.
Deep interest network for click-through rate prediction. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, pages 1059–1068, 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Incremental Learning
	2.2 Asynchronous Distributed Training

	3 Issues with Incremental Training
	4 Proposed Method and Experiments
	5 Conclusion
	References

