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ABSTRACT
Click-Through Rate(CTR) estimation has become one of the most
fundamental tasks in many real-world applications and it’s impor-
tant for ranking models to effectively capture complex high-order
features. Shallow feed-forward network is widely used in many
state-of-the-art DNNmodels such as FNN, DeepFM and xDeepFM to
implicitly capture high-order feature interactions. However, some
research has proved that addictive feature interaction, particular
feed-forward neural networks, is inefficient in capturing common
feature interaction. To resolve this problem, we introduce specific
multiplicative operation into DNN ranking system by proposing
instance-guided mask which performs element-wise product both
on the feature embedding and feed-forward layers guided by input
instance. We also turn the feed-forward layer in DNN model into
a mixture of addictive and multiplicative feature interactions by
proposing MaskBlock in this paper. MaskBlock combines the layer
normalization, instance-guided mask, and feed-forward layer and
it is a basic building block to be used to design new ranking model
under various configurations. The model consisting of MaskBlock
is called MaskNet in this paper and two new MaskNet models are
proposed to show the effectiveness of MaskBlock as basic building
block for composing high performance ranking systems. The ex-
periment results on three real-world datasets demonstrate that our
proposed MaskNet models outperform state-of-the-art models such
as DeepFM and xDeepFM significantly, which implies MaskBlock
is an effective basic building unit for composing new high perfor-
mance ranking systems.
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1 INTRODUCTION
Click-through rate (CTR) prediction is to predict the probability of a
user clicking on the recommended items. It plays important role in
personalized advertising and recommender systems. Many models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLP-KDD 2021, August 15, 2021, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

have been proposed to resolve this problem such as Logistic Regres-
sion (LR) [16], Polynomial-2 (Poly2) [17], tree-based models [7],
tensor-based models [12], Bayesian models [5], and Field-aware Fac-
torization Machines (FFMs) [11]. In recent years, employing DNNs
for CTR estimation has also been a research trend in this field and
some deep learning based models have been introduced such as
Factorization-Machine Supported Neural Networks(FNN)[24], At-
tentional Factorization Machine (AFM)[3], wide & deep(W&D)[22],
DeepFM[6], xDeepFM[13] etc.

Feature interaction is critical for CTR tasks and it’s important for
ranking model to effectively capture these complex features. Most
DNN ranking models such as FNN , W&D, DeepFM and xDeepFM
use the shallow MLP layers to model high-order interactions in an
implicit way and it’s an important component in current state-of-
the-art ranking systems.

However, Alex Beutel et.al [2] have proved that addictive feature
interaction, particular feed-forward neural networks, is inefficient
in capturing common feature crosses. They proposed a simple but
effective approach named "latent cross" which is a kind ofmultiplica-
tive interactions between the context embedding and the neural
network hidden states in RNN model. Recently, Rendle et.al’s work
[18] also shows that a carefully configured dot product baseline
largely outperforms the MLP layer in collaborative filtering. While
a MLP can in theory approximate any function, they show that
it is non-trivial to learn a dot product with an MLP and learning
a dot product with high accuracy for a decently large embedding
dimension requires a large model capacity as well as many training
data. Their work also proves the inefficiency of MLP layer’s ability
to model complex feature interactions.

Inspired by "latent cross"[2] and Rendle’s work [18], we care
about the following question: Can we improve the DNN ranking
systems by introducing specific multiplicative operation into it to
make it efficiently capture complex feature interactions?

In order to overcome the problem of inefficiency of feed-forward
layer to capture complex feature cross, we introduce a special kind
of multiplicative operation into DNN ranking system in this paper.
First, we propose an instance-guided mask performing element-
wise production on the feature embedding and feed-forward layer.
The instance-guided mask utilizes the global information collected
from input instance to dynamically highlight the informative ele-
ments in feature embedding and hidden layer in a unified manner.
There are two main advantages for adopting the instance-guided
mask: firstly, the element-wise product between the mask and hid-
den layer or feature embedding layer brings multiplicative opera-
tion into DNN ranking system in unified way to more efficiently
capture complex feature interaction. Secondly, it’s a kind of fine-
gained bit-wise attention guided by input instance which can both
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weaken the influence of noise in feature embedding and MLP layers
while highlight the informative signals in DNN ranking systems.

By combining instance-guided mask, a following feed-forward
layer and layer normalization, MaskBlock is proposed by us to turn
the commonly used feed-forward layer into a mixture of addic-
tive and multiplicative feature interactions. The instance-guided
mask introduces multiplicative interactions and the following feed-
forward hidden layer aggregates the masked information in order
to better capture the important feature interactions. While the layer
normalization can ease optimization of the network.

MaskBlock can be regarded as a basic building block to design
new ranking models under some kinds of configuration. The model
consisting of MaskBlock is called MaskNet in this paper and two
new MaskNet models are proposed to show the effectiveness of
MaskBlock as basic building block for composing high performance
ranking systems.

The contributions of our work are summarized as follows:
(1) In this work, we propose an instance-guided mask perform-

ing element-wise product both on the feature embedding
and feed-forward layers in DNN models. The global con-
text information contained in the instance-guided mask is
dynamically incorporated into the feature embedding and
feed-forward layer to highlight the important elements.

(2) We propose a basic building block named MaskBlock which
consists of three key components: instance-guided mask, a
following feed-forward hidden layer and layer normalization
module. In this way, we turn the widely used feed-forward
layer of a standard DNN model into a mixture of addictive
and multiplicative feature interactions.

(3) We also propose a new ranking framework named MaskNet
to compose new ranking system by utilizing MaskBlock as
basic building unit. To be more specific, the serial MaskNet
model and parallel MaskNet model are designed based on
the MaskBlock in this paper. The serial rank model stacks
MaskBlock block by block while the parallel rank model puts
manyMaskBlocks in parallel on a sharing feature embedding
layer.

(4) Extensive experiments are conduct on three real-world datasets
and the experiment results demonstrate that our proposed
two MaskNet models outperform state-of-the-art models
significantly. The results imply MaskBlock indeed enhance
DNN model’s ability of capturing complex feature interac-
tions through introducing multiplicative operation into DNN
models by instance-guided mask.

The rest of this paper is organized as follows. Section 2 intro-
duces some related works which are relevant with our proposed
model. We introduce our proposed models in detail in Section 3.
The experimental results on three real world datasets are presented
and discussed in Section 4. Section 5 concludes our work in this
paper.

2 RELATEDWORK
2.1 State-Of-The-Art CTR Models
Many deep learning based CTR models have been proposed in
recent years and it is the key factor for most of these neural network
based models to effectively model the feature interactions.

Factorization-Machine Supported Neural Networks (FNN)[24] is
a feed-forward neural network using FM to pre-train the embed-
ding layer. Wide & Deep Learning[22] jointly trains wide linear
models and deep neural networks to combine the benefits of mem-
orization and generalization for recommender systems. However,
expertise feature engineering is still needed on the input to the
wide part of Wide & Deep model. To alleviate manual efforts in
feature engineering, DeepFM[6] replaces the wide part of Wide &
Deep model with FM and shares the feature embedding between
the FM and deep component.

While most DNN ranking models process high-order feature
interactions by MLP layers in implicit way, some works explicitly
introduce high-order feature interactions by sub-network. Deep
& Cross Network (DCN)[21] efficiently captures feature interac-
tions of bounded degrees in an explicit fashion. Similarly, eXtreme
Deep Factorization Machine (xDeepFM) [13] also models the low-
order and high-order feature interactions in an explicit way by
proposing a novel Compressed Interaction Network (CIN) part.
AutoInt[19] uses a multi-head self-attentive neural network to
explicitly model the feature interactions in the low-dimensional
space. FiBiNET[9] can dynamically learn feature importance via
the Squeeze-Excitation network (SENET) mechanism and feature
interactions via bilinear function.

2.2 Feature-Wise Mask Or Gating
Feature-wise mask or gating has been explored widely in vision [8,
20], natural language processing [4] and recommendation system[14,
15]. For examples, Highway Networks [20] utilize feature gating
to ease gradient-based training of very deep networks. Squeeze-
and-Excitation Networks[8] recalibrate feature responses by ex-
plicitly multiplying each channel with learned sigmoidal mask
values. Dauphin et al.[4] proposed gated linear unit (GLU) to utilize
it to control what information should be propagated for predict-
ing the next word in the language modeling task. Gating or mask
mechanisms are also adopted in recommendation systems. Ma et
al. [15] propose a novel multi-task learning approach, Multi-gate
Mixture-of-Experts (MMoE), which explicitly learns to model task
relationships from data. Ma et al.[14] propose a hierarchical gating
network (HGN) to capture both the long-term and short-term user
interests. The feature gating and instance gating modules in HGN
select what item features can be passed to the downstream layers
from the feature and instance levels, respectively.

2.3 Normalization
Normalization techniques have been recognized as very effective
components in deep learning. Many normalization approaches have
been proposed with the two most popular ones being BatchNorm
[10] and LayerNorm [1] . Batch Normalization (Batch Norm or
BN)[10] normalizes the features by the mean and variance com-
puted within a mini-batch. Another example is layer normalization
(Layer Norm or LN)[1] which was proposed to ease optimization of
recurrent neural networks. Statistics of layer normalization are not
computed across the N samples in a mini-batch but are estimated in
a layer-wise manner for each sample independently. Normalization
methods have shown success in accelerating the training of deep
networks.
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3 OUR PROPOSED MODEL
In this section, we first describe the feature embedding layer. Then
the details of the instance-guided mask, MaskBlock and MaskNet
structure we proposed will be introduced. Finally the log loss as a
loss function is introduced.

3.1 Embedding Layer
The input data of CTR tasks usually consists of sparse and dense
features and the sparse features are mostly categorical type. Such
features are encoded as one-hot vectors which often lead to exces-
sively high-dimensional feature spaces for large vocabularies. The
common solution to this problem is to introduce the embedding
layer. Generally, the sparse input can be formulated as:

x = [x1, x2, ..., xf ] (1)

where f denotes the number of fields, and xi ∈ Rn denotes a one-
hot vector for a categorical field with n features and xi ∈ Rn is
vector with only one value for a numerical field. We can obtain
feature embedding ei for one-hot vector xi via:

ei =Wexi (2)

whereWe ∈ Rk×n is the embedding matrix of n features and k is
the dimension of field embedding. The numerical feature x j can
also be converted into the same low-dimensional space by:

ej = Vjx j (3)

where Vj ∈ Rk is the corresponding field embedding with size k .
Through the aforementioned method, an embedding layer is

applied upon the raw feature input to compress it to a low dimen-
sional, dense real-value vector. The result of embedding layer is a
wide concatenated vector:

Vemb = concat(e1, e2, ..., ei , ..., ef ) (4)

where f denotes the number of fields, and ei ∈ Rk denotes the
embedding of one field. Although the feature lengths of input in-
stances can be various, their embedding are of the same length
f × k , where k is the dimension of field embedding.

We use instance-guided mask to introduce the multiplicative op-
eration into DNN ranking system and here the so-called "instance"
means the feature embedding layer of current input instance in the
following part of this paper.

3.2 Instance-Guided Mask
We utilize the global information collected from input instance by
instance-guided mask to dynamically highlight the informative
elements in feature embedding and feed-forward layer. For feature
embedding, the mask lays stress on the key elements with more
information to effectively represent this feature. For the neurons in
hidden layer, the mask helps those important feature interactions
to stand out by considering the contextual information in the input
instance. In addition to this advantage, the instance-guided mask
also introduces the multiplicative operation into DNN ranking
system to capture complex feature cross more efficiently.

As depicted in Figure 1, two fully connected (FC) layers with
identity function are used in instance-guided mask. Notice that the

Figure 1: Neural Structure of Instance-Guided Mask

input of instance-guided mask is always from the input instance,
that is to say, the feature embedding layer.

The first FC layer is called "aggregation layer" and it is a relatively
wider layer compared with the second FC layer in order to better
collect the global contextual information in input instance. The
aggregation layer has parametersWd1 and here d denotes the d-th
mask. For feature embedding and different MLP layers, we adopt
different instance-guided mask owning its parameters to learn to
capture various information for each layer from input instance.

The second FC layer named "projection layer" reduces dimension-
ality to the same size as feature embedding layer Vemb or hidden
layer Vhidden with parametersWd2, Formally,

Vmask =Wd2(Relu(Wd1Vemb + βd1)) + βd2 (5)

where Vemb ∈ Rm=f ×k refers to the embedding layer of input
instance,Wd1 ∈ Rt×m andWd2 ∈ Rz×t are parameters for instance-
guided mask, t and z respectively denotes the neural number of
aggregation layer and projection layer, f denotes the number of
fields and k is the dimension of field embedding. βd1 ∈ Rt×m and
βd2 ∈ Rz×t are learned bias of the two FC layers. Notice here that
the aggregation layer is usually wider than the projection layer
because the size of the projection layer is required to be equal to the
size of feature embedding layer or MLP layer. So we define the size
r = t/z as reduction ratio which is a hyper-parameter to control
the ratio of neuron numbers of two layers.

Element-wise product is used in this work to incorporate the
global contextual information aggregated by instance-guided mask
into feature embedding or hidden layer as following:

VmaskedEMB = Vmask ⊙ Vemb

VmaskedH ID = Vmask ⊙ Vhidden
(6)

where Vemb denotes embedding layer and Vhidden means the feed-
forward layer in DNNmodel, ⊙means the element-wise production
between two vectors as follows:

Vi ⊙ Vj = [Vi1 ·Vj1,Vi2 ·Vj2, ...,Viu ·Vju ] (7)

here u is the size of vector Vi and Vj
The instance-guidedmask can be regarded as a special kind of bit-

wise attention or gating mechanism which uses the global context
information contained in input instance to guide the parameter
optimization during training. The bigger value in Vmask implies
that the model dynamically identifies an important element in
feature embedding or hidden layer. It is used to boost the element in
vectorVemb orVhidden . On the contrary, small value inVmask will
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suppress the uninformative elements or even noise by decreasing
the values in the corresponding vector Vemb or Vhidden .

The two main advantages in adopting the instance-guided mask
are: firstly, the element-wise product between the mask and hidden
layer or feature embedding layer brings multiplicative operation
into DNN ranking system in unified way to more efficiently cap-
ture complex feature interaction. Secondly, this kind of fine-gained
bit-wise attention guided by input instance can both weaken the
influence of noise in feature embedding and MLP layers while high-
light the informative signals in DNN ranking systems.

3.3 MaskBlock
To overcome the problem of the inefficiency of feed-forward layer
to capture complex feature interaction in DNN models, we propose
a basic building block named MaskBlock for DNN ranking systems
in this work, as shown in Figure 2 and Figure 3. The proposed
MaskBlock consists of three key components: layer normalization
module ,instance-guided mask, and a feed-forward hidden layer.
The layer normalization can ease optimization of the network. The
instance-guided mask introduces multiplicative interactions for
feed-forward layer of a standard DNN model and feed-forward
hidden layer aggregate the masked information in order to better
capture the important feature interactions. In this way, we turn the
widely used feed-forward layer of a standard DNN model into a
mixture of addictive and multiplicative feature interactions.

First, we briefly review the formulation of LayerNorm.
Layer Normalization:
In general, normalization aims to ensure that signals have zeromean
and unit variance as they propagate through a network to reduce
"covariate shift" [10]. As an example, layer normalization (Layer
Norm or LN)[1] was proposed to ease optimization of recurrent
neural networks. Specifically, let x = (x1, x2, ..., xH ) denotes the
vector representation of an input of size H to normalization layers.
LayerNorm re-centers and re-scales input x as

h = g ⊙ N (x) + b, N (x) =
x − µ

δ
,

µ =
1
H

H∑
i=1

xi , δ =

√√√
1
H

H∑
i=1

(xi − µ)2
(8)

where h is the output of a LayerNorm layer. ⊙ is an element-wise
production operation. µ and δ are the mean and standard deviation
of input. Bias b and gain g are parameters with the same dimension
H .

As one of the key component in MaskBlock, layer normalization
can be used on both feature embedding and feed- forward layer. For
the feature embedding layer, we regard each feature’s embedding
as a layer to compute the mean, standard deviation, bias and gain
of LN as follows:

LN_EMB(Vemb ) = concate
(
LN (e1), LN (e2), ..., LN (ei ), ..., LN (ef )

)
(9)

As for the feed-forward layer in DNN model, the statistics of
LN are estimated among neurons contained in the corresponding
hidden layer as follows:

LN_HID(Vhidden ) = ReLU (LN (WiX)) (10)

Figure 2: MaskBlock on Feature Embedding

Figure 3: MaskBlock on MaskBlock

whereX ∈ Rt refers to the input of feed-forward layer,Wi ∈ R
m×t

are parameters for the layer, t andm respectively denotes the size
of input layer and neural number of feed-forward layer. Notice that
we have two places to put normalization operation on the MLP:
one place is before non-linear operation and another place is after
non-linear operation. We find the performance of the normalization
before non-linear consistently outperforms that of the normaliza-
tion after non-linear operation. So all the normalization used in
MLP part is put before non-linear operation in our paper as formula
(4) shows.
MaskBlock on Feature Embedding:
We propose MaskBlock by combining the three key elements: layer
normalization, instance-guided mask and a following feed-forward
layer. MaskBlock can be stacked to form deeper network. According
to the different input of each MaskBlock, we have two kinds of
MaskBlocks: MaskBlock on feature embedding and MaskBlock on
Maskblock. We will firstly introduce the MaskBlock on feature
embedding as depicted in Figure 2 in this subsection.

The feature embedding Vemb is the only input for MaskBlock
on feature embedding. After the layer normalization operation
on embedding Vemb . MaskBlock utilizes instance-guided mask
to highlight the informative elements in Vemb by element-wise
product, Formally,

VmaskedEMB = Vmask ⊙ LN_EMB(Vemb ) (11)

where ⊙ means an element-wise production between the instance-
guidedmask and the normalized vectorLNEMB(Vemb ),VmaskedEMB
denote the masked feature embedding. Notice that the input of
instance-guided mask Vmask is also the feature embedding Vemb .
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Figure 4: Structure of Serial Model and Parallel Model

We introduce a feed-forward hidden layer and a following layer
normalization operation in MaskBlock to better aggregate the
masked information by a normalized non-linear transformation.
The output of MaskBlock can be calculated as follows:

Voutput = LN_HID(WiVmaskdEMB )

= ReLU (LN (Wi (Vmask ⊙ LN_EMB(Vemb ))))
(12)

where Wi ∈ R
q×n are parameters of the feed-forward layer in the

i-th MaskBlock, n denotes the size of VmaskedEMB and q means
the size of neural number of the feed-forward layer.

The instance-guided mask introduces the element-wise product
into feature embedding as a fine-grained attention while normaliza-
tion both on feature embedding and hidden layer eases the network
optimization. These key components in MaskBlock help the feed-
forward layer capture complex feature cross more efficiently.
MaskBlock on MaskBlock:
In this subsection, we will introduce MaskBlock on MaskBlock
as depicted in Figure 3. There are two different inputs for this
MaskBlock: feature embedding Vemb and the output V p

output of
the previous MaskBlock. The input of instance-guided mask for
this kind of MaskBlock is always the feature embedding Vemb .
MaskBlock utilizes instance-guided mask to highlight the important
feature interactions in previous MaskBlock’s output V p

output by
element-wise product, Formally,

VmaskedH ID = Vmask ⊙ V
p
output (13)

where ⊙ means an element-wise production between the instance-
guided mask Vmask and the previous MaskBlock’s output V p

output ,
VmaskedH ID denote the masked hidden layer.

In order to better capture the important feature interactions,
another feed-forward hidden layer and a following layer normaliza-
tion are introduced in MaskBlock . In this way, we turn the widely
used feed-forward layer of a standard DNN model into a mixture
of addictive and multiplicative feature interactions to avoid the
ineffectiveness of those addictive feature cross models. The output

of MaskBlock can be calculated as follows:

Voutput = LN_HID(WiVmaskdH ID )

= ReLU (LN (Wi (Vmask ⊙ Vpoutput )))
(14)

whereWi ∈ R
q×n are parameters of the feed-forward layer in the

i-th MaskBlock, n denotes the size of VmaskedH ID and q means
the size of neural number of the feed-forward layer.

3.4 MaskNet
Based on the MaskBlock, various new ranking models can be de-
signed according to different configurations. The rank model con-
sisting of MaskBlock is called MaskNet in this work. We also pro-
pose two MaskNet models by utilizing the MaskBlock as the basic
building block.
Serial MaskNet:
We can stack one MaskBlock after another to build the ranking
system , as shown by the left model in Figure 4. The first block
is a MaskBlock on feature embedding and all other blocks are
MaskBlock on Maskblock to form a deeper network. The prediction
layer is put on the final MaskBlock’s output vector. We call MaskNet
under this serial configuration as SerMaskNet in our paper. All
inputs of instance-guided mask in every MaskBlock come from the
feature embedding layer Vemb and this makes the serial MaskNet
model look like a RNN model with sharing input at each time step.
Parallel MaskNet:
We propose another MaskNet by placing several MaskBlocks on
feature embedding in parallel on a sharing feature embedding layer,
as depicted by the right model in Figure 4. The input of each block is
only the shared feature embedding Vemb under this configuration.
We can regard this ranking model as a mixture of multiple experts
just as MMoE[15] does. Each MaskBlock pays attention to specific
kind of important features or feature interactions. We collect the
information of each expert by concatenating the output of each
MaskBlock as follows:

Vmerдe = concate(V1
output ,V

2
output , ...,V

i
output , ...,V

u
output )

(15)
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where Vioutput ∈ Rq is the output of the i-th MaskBlock and q

means size of neural number of feed-forward layer in MaskBlock,
u is the MaskBlock number.

To further merge the feature interactions captured by each ex-
pert, multiple feed-forward layers are stacked on the concatenation
information Vmerдe . Let H0 = Vmerдe denotes the output of the
concatenation layer, then H0 is fed into the deep neural network
and the feed forward process is:

Hl = ReLU (WlHl−1 + βl ) (16)

where l is the depth and ReLU is the activation function.Wt , βt ,Hl
are the model weight, bias and output of the l-th layer. The predic-
tion layer is put on the last layer of multiple feed-forward networks.
We call this version MaskNet as "ParaMaskNet" in the following
part of this paper.

3.5 Prediction Layer
To summarize, we give the overall formulation of our proposed
model’ s output as:

ŷ = δ (w0 +
n∑
i=1

wixi ) (17)

where ŷ ∈ (0, 1) is the predicted value of CTR, δ is the sigmoid
function, n is the size of the last MaskBlock’s output(SerMaskNet)
or feed-forward layer(ParaMaskNet), xi is the bit value of feed-
forward layer andwi is the learned weight for each bit value.

For binary classifications, the loss function is the log loss:

L = −
1
N

N∑
i=1

yi log(ŷi ) + (1 − yi ) log(1 − ŷi ) (18)

where N is the total number of training instances, yi is the ground
truth of i-th instance and ŷi is the predicted CTR. The optimization
process is to minimize the following objective function:

L = L + λ∥Θ∥ (19)
where λ denotes the regularization term and Θ denotes the set of
parameters, including those in feature embedding matrix, instance-
guided mask matrix, feed-forward layer in MaskBlock, and predic-
tion part.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the proposed approaches on three real-
world datasets and conduct detailed ablation studies to answer the
following research questions:

• RQ1Does the proposedMaskNetmodel based on theMaskBlock
perform better than existing state-of-the-art deep learning
based CTR models?

• RQ2What are the influences of various components in the
MaskBlock architecture? Is each component necessary to
build an effective ranking system?

• RQ3 How does the hyper-parameter of networks influence
the performance of our proposed two MaskNet models?

• RQ4 Does instance-guided mask highlight the important
elements in feature embedding and feed-forward layers ac-
cording to the input instance?

In the following, we will first describe the experimental settings,
followed by answering the above research questions.

4.1 Experiment Setup
4.1.1 Datasets. The following three data sets are used in our ex-
periments:

(1) Criteo1 Dataset:As a very famous public real world display
ad dataset with each ad display information and correspond-
ing user click feedback, Criteo data set is widely used in
many CTR model evaluation. There are 26 anonymous cate-
gorical fields and 13 continuous feature fields in Criteo data
set.

(2) Malware2 Dataset: Malware is a dataset from Kaggle com-
petitions published in the Microsoft Malware prediction. The
goal of this competition is to predict a Windows machine’s
probability of getting infected. The malware prediction task
can be formulated as a binary classification problem like a
typical CTR estimation task does.

(3) Avazu3 Dataset: The Avazu dataset consists of several days
of ad click- through data which is ordered chronologically.
For each click data, there are 23 fields which indicate ele-
ments of a single ad impression.

We randomly split instances by 8 : 1 : 1 for training , validation
and test while Table 1 lists the statistics of the evaluation datasets.

Table 1: Statistics of the evaluation datasets

Datasets #Instances #fields #features

Criteo 45M 39 30M
Avazu 40.43M 23 9.5M
Malware 8.92M 82 0.97M

4.1.2 Evaluation Metrics. AUC (Area Under ROC) is used in our
experiments as the evaluation metric. AUC’s upper bound is 1 and
larger value indicates a better performance.

RelaImp is also as work [23] does to measure the relative AUC
improvements over the corresponding baseline model as another
evaluation metric. Since AUC is 0.5 from a random strategy, we
can remove the constant part of the AUC score and formalize the
RelaImp as:

RelaImp =
AUC(Measured Model) − 0.5

AUC(Base Model) − 0.5
− 1 (20)

4.1.3 Models for Comparisons. We compare the performance of the
following CTR estimation models with our proposed approaches:
FM, DNN, DeepFM, Deep&Cross Network(DCN), xDeepFM and Au-
toInt Model, all of which are discussed in Section 2. FM is considered
as the base model in evaluation.

1Criteo http://labs.criteo.com/downloads/download-terabyte-click-logs/
2Malware https://www.kaggle.com/c/microsoft-malware-prediction
3Avazu http://www.kaggle.com/c/avazu-ctr-prediction

http://labs.criteo.com/downloads/download-terabyte-click-logs/
https://www.kaggle.com/c/microsoft-malware-prediction
http://www.kaggle.com/c/avazu-ctr-prediction


MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided MaskDLP-KDD 2021, August 15, 2021, Singapore

Table 2: Overall performance (AUC) of differentmodels on three datasets(feature embedding size=10,our proposed twomodels
both have 3 MaskBlocks with same default settings.)

Criteo Malware Avazu

AUC RelaImp AUC RelaImp AUC RelaImp

FM 0.7895 0.00% 0.7166 0.00% 0.7785 0.00%
DNN 0.8054 +5.35% 0.7246 +3.70% 0.7820 +1.26%
DeepFM 0.8057 +5.46% 0.7293 +5.86% 0.7833 +1.72%

DCN 0.8058 +5.49% 0.7300 +6.19% 0.7830 +1.62%
xDeepFM 0.8064 +5.70% 0.7310 +6.65% 0.7841 +2.01%
AutoInt 0.8051 +5.39% 0.7282 +5.36% 0.7824 +1.40%

SerMaskNet 0.8119 +7.74% 0.7413 +11.40% 0.7877 +3.30%
ParaMaskNet 0.8124 +7.91% 0.7410 +11.27% 0.7872 +3.12%

4.1.4 Implementation Details. We implement all the models with
Tensorflow in our experiments. For optimization method, we use
the Adam with a mini-batch size of 1024 and a learning rate is set
to 0.0001. Focusing on neural networks structures in our paper, we
make the dimension of field embedding for all models to be a fixed
value of 10. For models with DNN part, the depth of hidden layers is
set to 3, the number of neurons per layer is 400, all activation func-
tion is ReLU. For default settings in MaskBlock, the reduction ratio
of instance-guided mask is set to 2. We conduct our experiments
with 2 Tesla K40 GPUs.

4.2 Performance Comparison (RQ1)
The overall performances of different models on three evaluation
datasets are show in the Table 2. From the experimental results, we
can see that:

(1) Both the serial model and parallel model achieve better per-
formance on all three datasets and obtains significant im-
provements over the state-of-the-art methods. It can boost
the accuracy over the baseline FM by 3.12% to 11.40%, base-
line DeepFM by 1.55% to 5.23%, as well as xDeepFM baseline
by 1.27% to 4.46%. We also conduct a significance test to
verify that our proposed models outperforms baselines with
the significance level α = 0.01.
Though maskNet model lacks similar module such as CIN in
xDeepFM to explicitly capture high-order feature interaction,
it still achieves better performance because of the existence
of MaskBlock. The experiment results imply that MaskBlock
indeed enhance DNN Model’s ability of capturing complex
feature interactions through introducing multiplicative op-
eration into DNN models by instance-guided mask on the
normalized feature embedding and feed-forward layer.

(2) As for the comparison of the serial model and parallel model,
the experimental results show comparable performance on
three evaluation datasets. It explicitly proves that MaskBlock
is an effective basic building unit for composing various high
performance ranking systems.

4.3 Ablation Study of MaskBlock (RQ2)
In order to better understand the impact of each component in
MaskBlock, we perform ablation experiments over key components

of MaskBlock by only removing one of them to observe the per-
formance change, including mask module, layer normalization(LN)
and feed-forward network(FFN). Table 3 shows the results of our
two full version MaskNet models and its variants removing only
one component.

From the results in Table 3, we can see that removing either
instance-guided mask or layer normalization will decrease model’s
performance and this implies that both the instance-guided mask
and layer normalization are necessary components in MaskBlock
for its effectiveness. As for the feed-forward layer in MaskBlock,
its effect on serial model or parallel model shows difference. The
Serial model’s performance dramatically degrades while it seems
do no harm to parallel model if we remove the feed-forward layer
in MaskBlock. We deem this implies that the feed-forward layer in
MaskBlock is important for merging the feature interaction infor-
mation after instance-guided mask. For parallel model, the multiple
feed-forward layers above parallel MaskBlocks have similar func-
tion as feed-forward layer in MaskBlock does and this may produce
performance difference between two models when we remove this
component.

Table 3: Overall performance (AUC) of MaskNet models
removing different component in MaskBlock on Criteo
dataset(feature embedding size=10, MaskNet model has 3
MaskBlocks.)

Model Name SerMaskNet ParaMaskNet

Full 0.8119 0.8124
-w/o Mask 0.8090 0.8093
-w/o LN 0.8106 0.8103
-w/o FFN 0.8085 0.8122

4.4 Hyper-Parameter Study(RQ3)
In the following part of the paper, we study the impacts of hyper-
parameters on two MaskNet models, including 1) the number of
feature embedding size; 2) the number of MaskBlock; and 3) the
reduction ratio in instance-guided mask module. The experiments
are conducted on Criteo dataset via changing one hyper-parameter
while holding the other settings. The hyper-parameter experiments
show similar trend in other two datasets.
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Table 4: Overall performance (AUC) of different feature em-
bedding size of MaskNet Models on Criteo dataset(the num-
ber of MaskBlock is 3)

Embedding Size 10 20 30 50 80

SerMaskNet 0.8119 0.8123 0.8121 0.8125 0.8121
ParaMaskNet 0.8124 0.8128 0.8131 0.8129 0.8129

Table 5: Overall performance (AUC) of different num-
bers of MaskBlocks in MaskNet model on Criteo
dataset(embedding size= 10)

Block Number 1 3 5 7 9

SerMaskNet 0.8110 0.8119 0.8126 0.8117 0.8115
ParaMaskNet 0.8113 0.8124 0.8127 0.8128 0.8132

Table 6: Overall performance (AUC) of different size of
Hidden Layer in Mask Module of MastBlock on Criteo
dataset.(embedding size= 10, number of MaskBlock is 3)

Reduction ratio 1 2 3 4 5

SerMaskNet 0.8118 0.8119 0.8120 0.8117 0.8119
ParaMaskNet 0.8124 0.8124 0.8122 0.8122 0.8124

Number of Feature Embedding Size. The results in Table 4
show the impact of the number of feature embedding size on model
performance. It can be observed that the performances of both
models increase when embedding size increases at the beginning.
However, model performance degrades when the embedding size is
set greater than 50 for SerMaskNet model and 30 for ParaMaskNet
model. The experimental results tell us the models benefit from
larger feature embedding size.

Number of MaskBlock. For understanding the influence of the
number of MaskBlock on model’s performance, we conduct exper-
iments to stack MaskBlock from 1 to 9 blocks for both MaskNet
models. The experimental results are listed in the Table 5. For Ser-
MaskNet model, the performance increases with more blocks at the
beginning until the number is set greater than 5. While the perfor-
mance slowly increases when we continually add more MaskBlock
into ParaMaskNet model. This may indicates that more experts
boost the ParaMaskNet model’s performance though it’s more time
consuming.

Reduction Ratio in Instance-Guided Mask. In order to ex-
plore the influence of the reduction ratio in instance-guided mask,
We conduct some experiments to adjust the reduction ratio from 1
to 5 by changing the size of aggregation layer. Experimental results
are shown in Table 6 and we can observe that various reduction
ratio has little influence on model’s performance. This indicates
that we can adopt small reduction ratio in aggregation layer in real
life applications for saving the computation resources.

4.5 Instance-Guided Mask Study(RQ4)
As discussed in Section in 3.2, instance-guidedmask can be regarded
as a special kind of bit-wise attention mechanism to highlight im-
portant information based on the current input instance. We can

Figure 5: Distribution of Mask Values

Figure 6: Mask Values of Two Expamples

utilize instance-guided mask to boost the informative elements
and suppress the uninformative elements or even noise in feature
embedding and feed-forward layer.

To verify this, we design the following experiment: After training
the SerMaskNet with 3 blocks, we input different instances into the
model and observe the outputs of corresponding instance-guided
masks.

Firstly, we randomly sample 100000 different instances from
Criteo dataset and observe the distributions of the produced values
by instance-guided mask from different blocks. Figure 5 shows
the result. We can see that the distribution of mask values follow
normal distribution. Over 50% of the mask values are small number
near zero and only little fraction of the mask value is a relatively
larger number. This implies that large fraction of signals in feature
embedding and feed-forward layer is uninformative or even noise
which is suppressed by the small mask values. However, there
is some informative information boosted by larger mask values
through instance-guided mask.

Secondly, we randomly sample two instances and compare the
difference of the produced values by instance-guided mask. The
results are shown in Figure 6. We can see that: As for the mask
values for feature embedding, different input instances lead the
mask to pay attention to various areas. Themask outputs of instance
A pay more attention to the first few features and the mask values
of instance B focus on some bits of other features. We can observe
the similar trend in the mask values in feed-forward layer. This
indicates the input instance indeed guide the mask to pay attention
to the different part of the feature embedding and feed-forward
layer.

5 CONCLUSION
In this paper, we introduce multiplicative operation into DNN rank-
ing system by proposing instance-guided mask which performs
element-wise product both on the feature embedding and feed-
forward layers. We also turn the feed-forward layer in DNN model
into a mixture of addictive andmultiplicative feature interactions by
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proposingMaskBlock by bombing the layer normalization, instance-
guided mask, and feed-forward layer. MaskBlock is a basic building
block to be used to design new ranking model. We also propose two
specific MaskNet models based on the MaskBlock. The experiment
results on three real-world datasets demonstrate that our proposed
models outperform state-of-the-art models such as DeepFM and
xDeepFM significantly.
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