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ABSTRACT
In this paper, we propose a highly scalable product image type clas-
sification framework that is designed to manage visual assets on
home improvement retailer online platforms. With the continuous
growth of online business and the expansion of catalog sizes, we
find that the amount and diversity of product-related data continue
to expand. In this research, we focus on one specific element of
product data: images. The manual selection of the most relevant
image to enable a specific customer experience (e.g. inspiration, ad-
vertisement, comparison, etc.) is impossible. Even when the product
is known, we recognized that images could be described along dif-
ferent aspects such as their content (room scene, white background,
line art, etc.), the product view (front-facing, angled views, etc.),
the annotations, etc. Such descriptors are foundational elements
in choosing the best images for many applications. Our solution
consists of designing an ontology to define visual concepts and or-
ganizing their relationships. This ontology determines the series of
classifiers we trained to predict multiple labels that define various
image types. The classifiers are trained by leveraging both deep
learning (fine-tuned convolutional neural networks with Siamese
network triplet loss) and traditional computer vision (local pattern
feature extraction) techniques. Besides, we further improve the
prediction accuracies by using an active learning approach to select
highly informative training data. Our latest models indicate accura-
cies of predicting the correct labels ranging from 84% to 98%. To
automate the classification process, we developed a highly scalable
production pipeline that predicts tens of millions of images, in par-
allel, in a matter of hours on a weekly basis. We also demonstrated
the benefits of the proposed framework through three business
applications where selecting the best images played a critical role
in improving powering customer experiences.
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1 INTRODUCTION
Online retailers and more broadly e-commerce rely on content such
as text description and specifications to properly present products.
In addition, visual media (photos, videos, AR, etc.) is playing an
increasing role in providing factual information when the appear-
ance and aesthetics of the products are important factors of the
customers selection, which is particularly relevant in fashion, home
décor, art, automobile, real estate, etc. Websites usually provide
multiple images of a product in order to create an enhanced experi-
ence and each type of images shows a different aspect (Figure 1).
Customers gain a more comprehensive understanding of the prod-
uct from these multiple perspectives, seeing a single product view
("silo", see appendix for more definitions), a close-up that highlight
details, the product dimensions, or a lifestyle picturing the product
in the context of a scene. Another benefit of knowing the type of
image available for a product is in the selection of the best image
as an input of an algorithm that powers applications such as visual
search and recommendations. The definition of the best images
varies in function of the application, for example the product di-
mensions are added to silo images , the marketing campaigns favor
inspirational lifestyle images. This paper addresses the prerequisite
needed to select the best images for each application, by providing a
solution to accurately label all images with standardized descriptive
concepts we call "image types".

Given the size of online catalogs, human labeling is certainly not
conceivable. We initially thought about training a single Convolu-
tional Neural Networks (CNN) classifier to automate the prediction
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Figure 1: Product images of a chandelier. From left to right
in the top row, image types are: silo-front; close-up; dimen-
sions. Bottom row: lifestyle product, lifestyle limited scene,
lifestyle full room.

of labels. However, due to the extreme diversity of product cate-
gories and image types, we faced the major challenge of generaliza-
tion of CNN models to the most typical cases. Another challenge
was the granularity of the labels: for some applications, particular
concepts need to be further refined to distinguish nuances so we
created sub-concepts (e.g. lifestyle is further described as product-
only lifestyle, limited-scene lifestyle, and full-room lifestyle). These
observations motivated us to devise an ontology of image types
that define a set of concepts that can used across product cate-
gories. This ontology supervises and outlines the development of
our framework. Also, we further improved the results of the initial
CNN approach by developing a sequence of models combining
Siamese network loss functions, CNN fine-tuning, traditional com-
puter vision image features to reach higher model accuracy. Finally,
we integrated an active learning framework to effectively select the
most informative and representative images in the training data, to
further boost model performance in each training round.

2 RELATEDWORK
Product images are crucial assets for e-commerce platforms. Studies
have shown that maintaining a high standard of product images
has an extremely positive effect on keeping customer engagements
[6] and product popularity [31]. In terms of leveraging visual assets,
extensive applied data science research has primarily been focusing
on visual search (e.g., Microsoft [2][11], Alibaba [33], Amazon [36],
Facebook [27], Pinterest [23]) and visually similar product recom-
mendation (Google [28], Alibaba [33], Ipkart [22], Amazon [36]).
To power visual search and visually similar product recommen-
dation, image classification on product category classes is always
performed as a foundation (Facebook [13][1], Fashion classifica-
tion [19][16]). While classifying the product category classes, some
have documented the challenges caused by diverse image types.
For instance, Bergamo [2] and Zhang [33] mentioned some mis-
classifications due to taking lifestyle images which contain a lot
of background information that led to poorer results. This incon-
venience can be alleviated by making the primary product salient
(e.g., performing regional image cropping) as discussed by Li [15]

who reported a five-class image type classification approach which
served as an important image filter to support their “complete the
look” project. In general, existing literature on e-commerce images
have been dominated by the identification of products while so-
lutions to tackle the description of the type of image remain very
limited. The motivation of this work is to propose a systematic
approach of describing the diverse type of e-commerce images in
order to best support different applications.

With the rapid increase of computing power, image classifica-
tion approaches have been transformed in the past decade by the
evolution and success of Convolutional Neural Network (CNN).
New CNN architectures kept being invented (i.e., AlexNet [14],
GoogLeNet [26], VGG series [24], ResNet [10], Inception [25], Xcep-
tion [4], and Squeeze & Excitation [12]), each outperforming the
previous one and pushing the state-of-the-art accuracies to the next
level. These CNN architectures contain abundant image features
that are extremely useful for identifying the inherent image pat-
terns and thus distinguishing different image types. Apart from
these, additional insights can be generated by traditional computer
vision approaches such as HOG [5] and SIFT [17] that effectively
identify local image patterns. Studies have also shown that local
features contain abundant latent information, which are supportive
for image classification [32]. To achieve optimal outcomes of the
classification tasks, we implemented an aggregated feature set that
takes advantage of both CNN (via transfer learning) and traditional
computer vision techniques.

With the rapid growth of CNN in image classification, active
learning (AL) has become increasingly popular as it helps to obtain
better informative and representative training samples to improve
the performance of algorithms. Gal et al. [8] added a prior on the
weights of neural networks, sample the weights from the dropout
distribution at test time, and calculate the informativeness score of
an unlabeled image based on the variation ratio of prediction results
as a way to select the top-ranked-score images for manual labeling
before adding them into the training data for the next training round.
The main drawback of this method is that similar images could be
selected in real system or it might favor bringing more images from
certain categories. Elhamifar et al. [7] took advantage of convex
programming to select informative and diversity examples with
quadratic complexity. Future more, Sener et al. [21] applied the core
set and a greedy approximation to find the most distant image from
the training set. In [34] k-means clustering method was used as
a proxy to select a subset of diversity examples from top-ranking
examples with low margin scores. Zhu et al. [35] proposed an
active learning based framework that leverages domain expertise
and training data annotation to power product type classification
for e-commerce, which boosts significant search efficiency. Our
active learning approach is based on submodular optimization[29],
and more importantly it is scalable to large datasets by applying
feature-based selection method and narrowing down the selection
pool via pre-filtering samples.

3 FRAMEWORK OF THE IMAGE TYPE
CLASSIFIER PROJECT (ITC)

The framework built for the Image Type Classifier project is out-
lined in Figure 2. It is composed of an offline training, monitoring
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Figure 2: Illustration of the ITC project framework

and model improvement, and a production pipeline which is sched-
uled to run on a regular basis, for example daily or weekly, to serve
the online services that enable customer experiences. Each com-
ponent will be presented in detail in the next few sections. We are
summarizing below the major contributions of our system:

• We have developed a highly scalable framework to solve
a very challenging business problem related to the diverse
image types. To properly characterize an image and organize
the image types, we have created an expandable ImageType
Ontology, which outlines the hierarchy of the image type
concepts and relationships.

• Instead of relying on a large scale all-in-one classifier that
might have relatively poor performances, we created a novel
framework that leverages multiple classifiers and orga-
nizes them separately in specified order (launching or de-
taching any classifier won’t affect others in service).

• To perform offline model evaluation and model improve-
ment, we have integrated an active learning component.
By applying several advanced sampling methods on both
existing and newly generated label sets during model re-
training, active learning helps boost the model accuracy
significantly.

• To use ITC models in production, we built a highly scal-
able pipeline that automatically loads pretrained models and
processes in parallel tens of millions of images in hours. Dif-
ferent sets of models can be assigned to different categories,
which tailors to different business needs.

• Online services of ITC support several e-commerce appli-
cations such as alternative and complementary recommen-
dations, visual search and generation of enhanced image
asset by displaying product dimensions. ITC predictions are
critical as input of customer experience and algorithms. Feed-
back from the owners of these algorithms also loops back in
the offline processes and they are very valuable for growing
ontology graphs and model training.

4 IMAGE TYPE ONTOLOGY
At the core of offline modules, the role of the expandable Image
Type Ontology is to define the concepts that are used to characterize
an image and organize their relationships. As the major challenge

of building a highly representative ITC system, the complexity of
image types not only come from the size and diversity of the catalog,
but also from the inherent relationships of different image types.
As we explore the image database, we continuously discover new
and unique image type and expand the concepts of the ontology.
So far, we have identified about 30 unique concepts, or image types.
Some of these concepts are mutually exclusive, while others are
sub-concepts which inherent from their parents and add additional
granularity. While the majority of concepts are concrete and trans-
late into a label, some concepts are only intermediate abstracts
that do not translate into an actual label (e.g. angles). Based on the
applications (online home improvement retailers) we are support-
ing, the Image Type Ontology we have created has three mains
branches: Content, Annotation (Fig. 3) and View (Fig. 4). Ultimately,
an image can be described by multiple concepts, for example the
content or product view, and under each concept, we developed a
series of class names that we want to classify product images into
(illustrated in Figure 3).

Figure 3: Representation and illustration of the concepts of
image "Content" and "Annotation". Under these concepts,
images can be classified into close-up, silo, set, lifestyle, di-
mensions, and logo, etc. based on the diverse possible com-
position of the image (some concepts evolve to higher de-
grees of granularity). See Appendix for detailed definitions
of all image types.

The most represented concept in the image catalog we have used
is “silo” (almost 50%) and because of the multiple application that
this type of image drive, we further split the concepts into sub-
concepts, sometimes with several level of granularity (Fig. 4). As
the application grows more diverse to satisfy new business needs,
the ontology evolves to incorporate new concepts or to develop
image descriptors of higher-level granularities (e.g., distinguish
the angled-right from angled-right view of some non-symmetrical
products). The concepts and relationships of the ontology serve
as a means of efficient media that connects human-defined image
type taxonomy with machine learning labeling system.

5 ITC MODEL TRAINING AND EVALUATION
5.1 Model training and comparison
Based on the ontology described above, we can expect an online
catalog to have a non-uniform distribution of image types across
all product categories. Furthermore, some concepts only exist for
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Figure 4: Representation and illustration of the concept of
"View". Under this concept, an image can be described by sev-
eral sub-concepts depending on the various stationary views
the product is displayed in.

specific products (e.g. the "swatch/sample" concept is only relevant
for covering surfaces such as paint, flooring, wall paper, etc.), and
some concept do not apply to specific products (e.g., for symmetric
products such as the Christmas trees, we do not need to distinguish
the horizontal views). However, these following concepts are rela-
tively universal and can be found in (almost) all product categories:
lifestyle, closeup, dimensions, and silo.

To handle this situation, we have developed two types of ITC
models: the category-specific models and the generic models. The
category-specificmodels are trained on small human-labeled datasets
sampled (usually 200 instances per label class) from categories of
products that share similar shapes (e.g. dinning chair, patio chair,
office chair), and are designed to obtain higher accuracies for granu-
lar concepts (e.g. chair views such as front, angled-right, angled-left,
back, top, and bottom, etc.). The generic models are trained on a
large human-labeled dataset (e.g. 50k images) that are stratified
samples of images across all product categories so the trained mod-
els are robust to the variation of product types. The generic models
cover about half the image types that apply to almost all product
categories. The category-specific models aim to classify images
into more detailed patterns and much higher granularity, while the
generic models aim to capture some high-level characteristics of
image types across all categories.

The ITC model training consists of two stages. The first stage
is fine-tuning the pretrained state-of-the-art models (e.g., VGG16,
VGG19, ResNet, and GoogLeNet etc.), which has already proven to
carry rich features. Guided by [18], we implemented the fine-tuning
by altering some of these pretrained CNNs (e.g., VGG16, VGG19,
and ResNet usually win our lab tests). Specifically, we replace the
last dense layer with a new dense layer and then retrain the new
network as shown in Figure 5. During the training process, Siamese
network and triplet loss minimization [9][20] were employed for
their robustness in learning semantic similarity and distinguishing
between subtle nuances. The loss function is detailed as below.

𝐿𝑜𝑠𝑠 =

𝑁∑
𝑖=1

[∥ 𝑓 𝑎𝑖 − 𝑓
𝑝

𝑖
∥22 − ∥ 𝑓 𝑎𝑖 − 𝑓 𝑛𝑖 ∥22 + 𝛼] (1)

where ∥ 𝑓 𝑎
𝑖
− 𝑓

𝑝

𝑖
∥2 is the cosine similarity distance between anchor

and positive input; ∥ 𝑓 𝑎
𝑖

− 𝑓 𝑛
𝑖
∥2 is the cosine similarity distance

between anchor and negative input; 𝛼 is a constant. During the
training, two same-structure CNNs sharing the same weights are
configured. For each iteration of the training process, every input
image in the same batch has a chance to be selected as an anchor
(the chairs with yellow border in Figure 5), which is randomly as-
signed a positive image (image of the same classification class, e.g.,
the blue-bordered chair of Scenario 1 in Figure 5) and a negative im-
age (image of a different classification class, e.g., the blue-bordered
chair of Scenario 2 in Figure 5). All three images are passed through
the networks and the outputs of the top pooling layer are used
to compute the cosine similarity distances. By minimizing the av-
eraged distance difference, the network learns to adjust the CNN
weights towards a direction to differentiate different classes. After
this process, we have a transferred CNN (the yellow or blue neural
network in Figure 5) that predicts image features as output vectors.

Figure 5: Key components in ITC model training. Major
steps here are 1) train a finetuned CNN that output features
representing latent image type characteristics; 2) train a clas-
sifier (e.g., XGBoost) that ultimately predicts image types
with the CNN features and some additional computer vision
features.

To further enrich the feature set, we also examine some addi-
tional image features based on traditional computer vision and
concatenate these features with those extracted from the fine-tuned
models (Stage 2). For instance, knowing whether a product inter-
sects the image border will potentially help distinguish silo images
(no intersection) from lifestyle and closeup images (where inter-
section is very common). Number of disconnected objects in the
image is another important factor to predict whether or not an im-
age belongs to the “set” class. Other features such as the dominant
color pixels and white space area percentage are also very strong
predictors in identifying some classes (e.g., silo). These merged
feature sets are fed into classification models to build classifiers
that output probabilistic predictions. One of the most frequently
used classifiers is XGBoost [3] due to its enormous advantages (i.e.,
scalable, portable, and highly distributed nature, see [30]). Note
that the reason of applying aggregated feature set is to perform an
exhaustive exploration of all possible predictive features that might
contribute, despite it being plausible that the traditional computer
vision features are already covered by CNN latent features.
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Table 1: Coverage and tested accuracy of generic models.

Generic
models

Covered ontology
classes

Overall
test ac-
curacy:
baseline
model

Overall
test ac-
curacy:
Siamese
model

Generic
model#1

Closeup, lifestyle,
silo

85% 93%

Generic
model#2

All silo views (ex-
cept resolution, dis-
tance, and orienta-
tion classes)

79% 84%

Prior to adopting this approach, we have tried building baseline
models, finetuning single pretrained CNNswith new dense (same as
that in the Siamese network) and softmax layers. We obtained some
good results (see Table 1) but by applying the Siamese approach,
we keep elevating our benchmarks as models trained with this
approach outperform those from the single finetuned networks.

During every model training and testing tasks, we randomly split
every human-labeled dataset into testing set (20%), and training-
validation set (80%). We perform Gridsearch cross validation on
the training-validation set to train classification models and search
the best hyperparameters combinations for both the transferred
CNN (i.e., learning rate, number of epochs, size of batch, dropout
percentage, etc.) and XGBoost (e.g., size of the tree, regularization
coefficients, sampling strategies, etc.). Then we use the testing
set (which data has never been seen by any model) to report the
generalized accuracy score. Our latest test accuracies of the current
generic models range from 84.3% to 93.0% (Table 1), while those for
the category-specific models are from 86.0% to 98.0%, varying by
category (Table 2). Due to fact that generic models have to learn
the inherent data features of a mixture of diverse categories, they
always perform not as accurate as the category-specific ones which
tackle cases in only one single category.We are currently leveraging
both models but the question of how to achieve an optimal balance
between accuracy and coverage is still open and worth further
exploration.

For some important categories, we have performed human au-
diting on the ITC results prior to utilizing ITC results for business
applications (e.g., digital asset management). Business users are
particularly interested in how often they can trust an ITC predicted
result (relevant evaluation metric: precision). Table 3 presents the
precision results based on 400 examples randomly selected for each
class from three categories. It demonstrates that for these a few cate-
gories, ITC predicted results are trustable with very high confidence
levels (most precision scores are above 85%).

5.2 Active Learning integrated model
evaluation and improvement

Although Deep Learning models have shown unprecedented suc-
cess in many areas of computer vision and pattern recognition,
one big challenge is obtaining a large amount of labeled data to
train the parameters, or to fine-tune a pretrained model. Labeling
a dataset can be expensive and time consuming. Active learning

Table 2: Coverage, test accuracy of category-specific models.

Model cate-
gory

Covered ontology classes Overall
test
accuracy

Area Rugs Closeup non-white background,
closeup white background, lifestyle
full room, lifestyle limited scene,
lifestyle product, silo white back-
ground, sketch

87%

Chairs/Tables Silo-horizontal angle views, silo-
vertical angle views, open, info-
graphic

93%

Luggage silo-vertical angle views, silo-
horizontal angle views, open,
graphic, sketch, packaged, set

86%

Décor Paint Swatch-can, swatch-smear, swatch-
brand, swatch-blob

100%

Small Electrics Silo-front, silo-side, top, open 88%
Cabinet Knobs silo-vertical angle views, silo-

horizontal angle views
98%

Table 3:Humanauditedmodel performance results (Generic
model#1).

Category
name

Name of
class

Precision
of class

Percentage
of images

Overall
precision

Faucet Closeup 83% 8.8%
Lifestyle 84% 23.9% 91%
Silo 95% 61.4%

Vanity Closeup 97% 7.6%
Lifestyle 79% 30.6% 88%
Silo 92% 52.0%

Interior Closeup 97% 12.5%
Furniture Lifestyle 88% 25.5% 95%

Silo 99% 54.9%

is a framework to help in reducing the amount of labeled data re-
quired to train deep learning models while maintaining the same
performance or achieving even better performance. As shown in
Figure 6, every iteration of the active learning process we developed
starts with a small amount of cleaned data and then one or more
samples are selected from a larger unlabeled pool using certain
sampling methods. The next step is to perform human labeling on
the selected samples, the results of which will be added into the
original training data for model training at the next iteration until
ending criterion (budget or performance) is met.

In our active Learning application system, we would like to
address the following key points.

Batch aware: Traditional active learning algorithms select one
best sample to be annotated at a time. After the label is obtained,
the model retrains and then selects the next sample. However, on
one hand, deep neural networks are computationally heavy, and it
may take hours to train the model. Sampling one example at each
round may not be reasonable for most practical systems. On the
other hand, comparing to classical machine learning algorithms
(e.g., SVM), the confidence score output from the final “softmax”
layer of neural network model tends to be overconfident and one
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Figure 6: Illustration of the active learning pipeline.

example may not give enough information. Instead, selecting a
batch of samples is recommended for neural network models.

Informative and representative: The goal of active learning
is to select informative and representative samples to retain as
many features of the larger dataset without knowing the “ground
truth” as possible. Margin-based sampling method is a commonly
used to measure the informativeness of unlabeled data:

𝑓𝑖 = 𝑃 (𝑦1 |𝑖) − 𝑃 (𝑦2 |𝑖) (2)

where 𝑓𝑖 represents the informativeness of sample 𝑖 , 𝑃 (𝑦1 |𝑖) and
𝑃 (𝑦2 |𝑖)) are the confidence scores of the highest possible class and
second highest possible class predicted by the model for sample 𝑖 ,
respectively. Samples with smaller difference between the top two
label probabilities are more likely to be selected. In other words,
instances with small margin are more ambiguous. However, one
drawback of this method is that if we just select the top-ranking
samples via margin-based sampling, we may obtain many similar
examples or majority of the selected samples are from a certain
category. Especially, image datasets of e-commerce are quite big
and highly skewed with many duplicate images used by different
products from the same supplier.

Considering the large size of unlabeled data pool in reality, we
extend the feature-based submodular function provided in [29] for
selecting a subset of diverse images instead of speech data. The
general form of a feature-based submodular function is:

𝑓 (𝑋 ) =
𝐷∑
𝑑=1

𝑔(
𝑁∑
𝑖=1

𝑋𝑖,𝑑 ) (3)

Where 𝑔(∗) is concave function operating on a subset 𝑋 that has
𝑁 selected examples and 𝐷 dimension of features. Maximizing the
objective function naturally encourages the diversity and coverage
of the features within the selected dataset. Our newmethod includes
extending the feature-based submodular function for image subset
selection by leveraging the features discussed in Figure 5. To ensure
informativeness of samples, a pre-filtered candidate pool is selected
via margin-based sampling, and such strategy is named margin-
based submodular sampling.

5.2.1 Case Study. We evaluate the margin-based submodular
sampling as well as 3 other sampling methods, namely random
sampling, pure margin-based sampling and margin-based K-Means
sampling[34] on dataset (size: 12k) with three selected high-frequency
classes: lifestyle, silo, closeup. 600 images are selected as validation

dataset for evaluating the performance. At the first round, a VGG19
model is fine-tuned based on 600 images. Then, for each sampling
method, at each iteration, a batch of 600 images are selected and
added into the original training data to retrain the VGG19 model.
Each experiment is bootstrapped 10 times independently to get the
average performance and confidence interval. For margin-based
submodular and K-Means sampling methods, pre-filtered top 600*k
(k>1) images are selected firstly by margin-based sampling, and
then 600 images are selected via submodular function or clustering
method from the pre-filtered pool. In our case study, k equals to 10
and active learning loop includes 7 iterations until the total training
size reaches 4,200 examples. Square root function is used as the
concave function. The vector outputted from the pre-final layer of
VGG19 model is used as the feature vector in K-means clustering.

Figure 7 is the validation accuracy of each sampling method.
The line shows the average accuracy over 10 runs, and the shade
shows the 90% confidence interval band around the mean. We
can see that all active learning methods significantly outperform
random sampling method. Methods combining informative and
representative sampling outperform the method with only infor-
mative sampling. Our proposed method, margin-based submodule
sampling, is better than margin-based K-Means clustering method.
The validation accuracy is about 1% higher at each iteration after
the initial round. Performance of model trained on 1,600 examples
selected via margin-based submodule method is better than that of
model trained on 4,200 examples selected randomly.

Figure 7: Validation accuracy on a generic labeled dataset.

We also compare the average sample selection time of margin-
based submodule and margin-based K-Means at each iteration (ex-
cept the first round) on CPU. From Table 4, we can see that margin-
based submodule selection is faster than margin-based K-Means
due to the quadratic complexity of K-Means clustering.

Table 4: Average selection running time comparison be-
tweenmargin-based submodule andmargin-based K-Means
at each iteration.

Model Sampling size Average time(s)
Margin + Submodule 600 over 6000 23.85
Margin + K-Means 600 over 6000 30.75
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6 CONFIGURABLE ITC PIPELINE TO
OVERCOME THE HETEROGENEITY OF
IMAGE TYPES AMONG CATEGORIES

To automate the ITC models, we have built a highly scalable pro-
duction that automatically loads pretrained models that are created
with specific formats. Each model takes image URLs as input and
outputs a prediction result decoded from its label set. To properly
organize these models while productizing them, we developed con-
figuration scripts to specify the positions of specific models in the
production pipeline. Therefore, every image is routed to feed into a
sequence of pretrained ITC models depending on the product cate-
gory it belongs to, which is controlled by the configuration scripts.
The pipeline (shown in Figure 8) is highly scalable in several aspects.

Figure 8: ITC framework and pipeline. The input source is
dynamic since the online platform keeps adding new prod-
ucts and removing discontinued products. The pipeline di-
rects every image to follow a specific prediction route, spec-
ified by the configuration scripts, and distribute the predic-
tion results on weekly frequency.

• The pipeline allows old models to be replaced by new ones,
so we keep publishing best-to-date models as we obtain more
data or as we identify more advanced training strategies.

• The pipeline allows user-specified prediction routes, which
can be managed by the configuration scripts. This will make
possible same image being classified based on different ontol-
ogy concepts and structures. When we update an ontology
structure, the outputs can update accordingly as we manipu-
late the configuration scripts.

• The pipeline manages multiple classifiers efficiently and
these classifier models are independent of each other since
they are configured to category-wise prediction routes.

• The development of new models can be “on-demand” and
tailor to specific business needs.

• The pipeline distributes the computation workload into mul-
tiple instances (implemented with Apache Beam) so it can
routinely process massive amount of data (tens of millions)
in an acceptable period of time (a few hours).

• As an option, the pipeline can run in "delta mode", in which
it processes only the images that are newly introduced to the
catalog and avoids significant redundant computing work-
load as it classifies only a small portion of the image catalog
(i.e., the "delta).

7 APPLICATIONS OF ITC
7.1 Case 1: Line art imagery (LAI)
One of our online data science algorithms that relies heavily on
ITC is "line art imagery" which takes the silo-front or silo-angled
images (depending on product catagory) filtered by ITC as inputs
and subsequently attach product dimension information onto the
product image (Figure 9). With such line art images displayed on e-
commerce product information page, customers can quickly see key
product measurements, visually connect them with their respective
edges, and build confidence to make a buying decision. Customer
survey has shown that about 5% returned items are directly related
to misunderstandings of the product sizes. This feature is espe-
cially important for some high-visibility categories such as lighting,
area rugs, and vanities. Business analytics have shown that since
the launch of this project, it has been generating 2% incremen-
tal revenue and 9 bps incremental conversion in these categories
(presenting LAI to customers vs otherwise).

Figure 9: An Example of the LAI experience in two cate-
gories: end tables and refrigerators, where three dimensions
(height, width, depth) of the products are displayed directly
line art images.

As a critical backbone of LAI, ITC results are used to select as
many silo-front and silo-angled images as possible to maximize
the coverage. Lab experiment metrics suggest for a given category
where such images are available, by 89% chances ITC genericmodels
can successfully recommend the right image, while same metric for
ITC category-specific models (if there is one for a given category)
is 97%.

7.2 Case 2: more visually similar options (MVS)
One of our recommendation algorithms that takes ITC results as
input is “more visually similar options” (e.g., see below for a real
customer experience example). As a recommendation strategy, the
MVS algorithm leverages visual information to offer alternative
buying options to customers that are visually similar to the product
being viewed. One critical step in the MVS pipeline is to select
a "best image" for every product, which will be used to compute
the pairwise visually similar score. The pairwise visually similar
scores (cosine similarity scores of CNN image embeddings) are then
ranked and for every product the top 5 alternative products that
have similar visual appearances are recommended to customers.
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Therefore, how often the right best image are selected is an impor-
tant factor that affects the ultimate performance of MVS. In general,
the MVS prefers silo-front or silo-angled images to be selected as
best images since such images contain only the full product view
without any additional information that might possibly trigger
noise image embeddings. Figure 10 illustrates a sharp contrast in
terms of the MVS performances when different types of images are
selected as best images.

Figure 10: The first row is an example MVS customer experi-
ence. The image in the leftmost is the product being viewed
by a customer, and the others represent the MVS recom-
mendations. The second row is an example of a poorly per-
formed MVS recommendations. The wrongly chosen best
image in this case is a lifestyle image which, unlike silo-
front or silo-angled images, contains too much background
visual information so it results in irrelevant recommenda-
tions.

Prior to the development of ITC, the selection of best images is
a rule-based approach (original baseline solution) that computes
the white area percentage of every image of a product and the
image with the highest value is picked as the best image. After
leveraging ITC, significant improvement has taken place. Table 5
details a comparison of the best image selection quality between
the original approach and the ITC involved approach (test cate-
gory: interior furniture; sample size: 656 products). Therefore, ITC
plays a critical role in supplying the correct images to e-commerce
recommendation algorithms like MVS.

Table 5: Comparison of best image selection quality, before
and after ITC get involved

Baseline ITC
Number of correct best im-
ages selected

551 638

Frequency of correct best
images selected

83.9% 97.3%

7.3 Case 3: Hotspots
Another one of our recommendation algorithms currently in devel-
opment that heavily utilizes ITC results is Hotspots, which aims
to identify products within our product catalog based on informa-
tion retrieved from lifestyle images (selected from ITC) (Figure 11).

Major steps of this algorithm are: 1) feed the lifestyle image into
an object detection model which locates and categorizes the prod-
ucts of interest and crop the detected products of interest from the
lifestyle images (preferably lifestyle full room where more cate-
gories of products can be detected); 2) retrieve candidate product
images based on product categorization from the object detection
model and the image classification from ITC; and 3) A Siamese
network (also inspired from the ITC training) is then trained us-
ing the triplet loss function to generate similar embeddings from
the cropped image and the matched product image and dissimilar
embeddings from the cropped image and the remaining candidate
product images. Consequently, when a cropped image containing
a product of interest is searched against the product catalog, the
product with the most similar embedding as the cropped image is
retrieved from the list of potential candidates. This product will
most likely be the best match for the product of interest in the
cropped image.

Figure 11: An Example of the Hotspots experience. In this
example, detected accent chair and coffee table (anchors) are
used to match against the products in our catalog and rele-
vant results are recommended to customers.

ITC plays a critical role in the the Hotspots pipeline. Besides
filtering lifestyle full room images during Step 1, it also helps iden-
tify the best product images to match with the customer’s query
(Step 2). Since each product has several types of images, it is im-
portant to identify the ones that do not contain unnecessary noise
like background objects (i.e., silo, set, or closeup). Thus, the visual
embeddings generated from these silo images will contain latent
representations relevant to the key features of the product only.
Additionally, ITC is crucial to creating the training sets for the
Siamese Networks, since the training triplets require matching silo
and lifestyle images as well as mismatches. Without the automatic
results of ITC, we would not know which images belonging to a
product are silo, and our only alternative would be to manually
labeling images. In other words, ITC serves as an absolute prereq-
uisite for Hotspots.

8 CONCLUSION AND FUTUREWORKS
In this paper, we have presented a highly scalable and sustainable
image type classification framework that distinguishes diverse im-
age types from a wide-range of products from a home improvement
retailer online platform. As a comprehensive analysis of the mu-
tual exclusive relationships of various concepts used to describe
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the content and views of images, we have designed an extendable
ontology to define and organize the variety of image characteris-
tics. We keep growing the ontology graphs as we find more special
cases and collect more feedback from business users. Guided by
the ontology, we built robust ITC models by leveraging multiple
techniques including deep learning, traditional computer vision
approaches, as well as Siamese network triplet loss minimization.
Trained models are evaluated offline and further improved by active
learning approaches. To automate the classification process, we
have developed a pipeline that process in parallel tens of millions of
images routinely. The predicted labels are being used in production
to enable customer experiences by rendering abundant product
details and supplying sufficient best input images for recommenda-
tions and search. Lab experimentations have shown that ITC have
strong potential to significantly boost the performances of many
business applications such as LAI, MVS, and Hotspots.

As next steps of the continued development of ITC, we might
consider the following a few areas of opportunities:

• Personalization: for different categories, leverage multi-
armed bandit to automatically select the best image accord-
ingly. For different customers, generate personalized types
of images to display on the pages they are browsing.

• Customer generated images: apply ITC to customer gen-
erated images which can potentially help organize these
user-contributed resources, which can be used to replenish
missing types of images from the product catalog.
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A ONTOLOGY CONCEPT DEFINITION

Table 6: Definition of class under concept group

Concept group Class name Definition
Annotation Logo Any image that has a logo or other marketing materials with it
Annotation Dimensions Image that contains dimension information adjacent to product
Content Closeup (with white

or non-white back-
ground)

Zoomed in product image as a purpose to highlight partial details

Content Sketch Image that contains some sketch or drawings of a product
Content Infographic Any image that has text descriptions, specifications, or other marketing materials with it
Content Swatch/sample Pure color/homogenous color in the whole image
Content Swatch-Can Image contains a product can in a corner and pure/homogenous color in the rest of the image
Content Swatch-Smear Smear textured pure/homogeneous color in the whole image
Content Swatch-Brand Images contain a brand logo in a corner and pure/homogeneous color in the rest of the image
Content Swatch-Blob Blob shaped pure/homogeneous color in the whole image
Content Silo Image contains a single full product with a white/non-white background
Content Set Image contains multiple products with a white/non-white background (can be full identical product set, full non-identical product

set or part set)
Content Open Silo image that contains a full product that is open (having inside view)
Content Props Silo image contains a full product that come with several decorations around
Content Packaged Silo image that displays packaged product (s)
Content Lifestyle (limited

scene/full scene)
Images contain a single or multiple products taken in a rich scene that has abundant other contents

Views Dist. far view Silo image contains a small-scale product that it takes up small fraction of the whole image area
Views Dist. near view Image contains a large-scale product that it takes up majority of the whole image area
Views Front/back Silo image that is front facing or back facing
Views Vert. angled 90/270 Silo image that is vertically rotated 90/270 degrees, relative to the front facing view
Views Vert. angled 45/135 Silo image that is vertically rotated 45/135 degrees, relative to the front facing view
Views Vert. angled other Silo image that is vertically rotated by a random degree, relative to the front facing view
Views Side – left/right Silo image that is horizontally rotated 90/270 degrees (left/right), relative to the front facing view
Views Horiz. angled – an-

gled left/right
Silo image that is horizontally rotated towards the left/right, relative to the front facing view

Views Orientation flat Image contains slender product that is aligned flat
Views Orientation erect Image contains slender product that is aligned erectly
Views Surface presenta-

tions
Silo image of surface shaped products that are folded, stacked or rolled


	Abstract
	1 Introduction
	2 Related Work
	3 Framework of the Image Type Classifier Project (ITC) 
	4 Image Type Ontology
	5 ITC model training and evaluation
	5.1 Model training and comparison
	5.2 Active Learning integrated model evaluation and improvement

	6 Configurable ITC Pipeline to Overcome the Heterogeneity of Image Types among Categories
	7 Applications of ITC
	7.1 Case 1: Line art imagery (LAI) 
	7.2 Case 2: more visually similar options (MVS)
	7.3 Case 3: Hotspots 

	8 Conclusion and future works
	Acknowledgments
	References
	A Ontology Concept Definition

