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ABSTRACT
Variational autoencoder (VAE) has been successfully utilized for col-
laborative filtering (CF) models. Although effective, it still has some
limitations that can be improved. For instance, there exist correla-
tions between different features of the observation data. Accurately
capturing these correlations is challenging and can significantly
impact VAE-based CF models’ performance. Moreover, earlier VAE-
based CF models model the families of distributions based on the
mean-field theory, which greatly limits their generalizability. This
paper addresses this research gap by using Gaussian copula to help
the variational model preserve dependency among latent variables.
Besides, to make Gaussian Copula perform well in our VAE-CF
model, we design a novel reparameterization technique in the sam-
pling process. Consequently, our approach is able to construct more
complex distributions, and the resulting variational family can bet-
ter approximate the posterior distributions. Finally, we empirically
demonstrate the superiority of our proposed method over several
state-of-the-art baselines on three real-world datasets.
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1 INTRODUCTION
The large volume of user–item interaction data has facilitated the
design of several personalized recommendation models with the
aim of presenting to users a set of unseen items they may like.
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Collaborative filtering (CF) is one of the most commonly used tech-
nologies in recommender systems. In recent years, due to the strong
modeling ability of neural networks, a lot of studies have incorpo-
rated neural networks into their design of powerful collaborative
filtering algorithms [4, 13] and achieved improved performance.
Previous works have incorporated variational autoencoder (VAE) in
collaborative filtering by extending the linear latent factor models
to non-linear probabilistic models via neural networks. VAE-based
CF models [9, 12] have been evaluated on large-scale datasets and
demonstrated promising results.

Challenges: To make the inference tractable, many VAE-based
CF models employ the mean-field theory [3, 7], where each latent
variable is regarded as independent. This assumption enables ef-
ficient variational inference but sacrifices accuracy to a certain
extent. In many cases, there exist dependencies over the latent
variables of VAE, but the mean-field VAE models fail to capture
such correlations. Understanding the correlations between latent
variables is critical and can significantly improve the performance
of the recommendation models.

Contributions: In this paper, we address this issue by introduc-
ing Gaussian Copula into the VAE model for collaborative filtering.
As a classical method in statistics, the copula method can separate
the correlation between random variables from the marginal dis-
tribution of variables. Based on the copula theory, we model the
dependencies of latent variables via a covariance matrix to obtain a
more intricate multivariate distribution that can better approximate
the real posterior distribution. In order to make the Gaussian Cop-
ula VAE model perform well in collaborative filtering, we design a
novel reparameterization technique in the sampling process of a
copula family. Experiments on three real-world datasets show that
our method outperforms several cutting-edge baselines.

2 METHODOLOGY
The overall architecture of our Gaussian Copula Variational Autoen-
coder (GCVAE)model is shown in Figure 1. GCVAE consists of two
main components: the variational gaussian copula inference (VGCI)
and the generative network. VGCI has two networks parameterized
by 𝜙 and 𝜂. In particular, the inference network is used for the usual
variational inference and the correlation network is designed to
capture the important latent correlations. The generative network
parameterized by 𝜃 is used for the generative process.
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Figure 1: The overall architecture of Gaussian Copula VAE.

2.1 Variational Gaussian Copula Inference
Mapping user input data to appropriate latent variables is a crucial
step in any generative model. The variational autoencoder set the
distribution of potential variable to be a Gaussian distribution.

𝑞𝜙 (𝑧𝑖 |𝑥) = N(𝜇𝑖 , 𝜎2𝑖 ) (1)

where 𝑧 represents the multiple variables, L𝐸𝐿𝐵𝑂 represents the ev-
idence lower bound. The real posterior distribution 𝑝 is fixed, so we
need to adjust parameters to maximize L𝐸𝐿𝐵𝑂 through minimizing
the KL divergence.

LELBO = E𝑞𝜙 (𝑥)

[
log𝑝𝜃 (𝑥 |𝑧) + log

𝑝𝜃 (𝑧)
𝑞𝜙 (𝑧 |𝑥)

]
. (2)

In the mean-field theory, each latent variable is regarded as in-
dependent. Assume that the latent variable 𝑧 has 𝑘 dimensions, it

calculates 𝑞𝜙 (𝑧 |𝑥) =
𝑘∏
𝑗=1

𝑞 𝑗 (𝑧 𝑗 ). For scalable variational inference,

we consider that latent variables are not independent of each other
in the recommendation model. At this point, the Copula method is
an appropriate tool to model the correlation of random variables
with known marginal probability distributions. We use the varia-
tional gaussian copula inference to approximate the true posterior
distribution [10].

According to Sklar’s theorem, any multivariate joint distribu-
tion 𝐻 of 𝑛 random variables can be decomposed into respective
marginal probability distributions 𝐹 𝑗 (𝑥) = 𝑃 (𝑋 𝑗 ≤ 𝑥) and a Copula
function, such that

𝐻 (𝑥1, 𝑥2, ...𝑥𝑛) = 𝐶 (𝐹1 (𝑥1), 𝐹2 (𝑥2), ..., 𝐹𝑛 (𝑥𝑛)) . (3)
In this form, the randomness and coupling of the variables are

separated. The marginal probability distribution of each variable
reflects the randomness of variables, and the copula function aims
to capture the coupling between variables. In other words, the
nature of a joint distribution with respect to correlation is entirely
determined by its copula function.

Therefore, as long as we have a copula function, we can flexibly
construct their joint distribution and calculate the joint probability
density function via derivation. Let 𝑐 (·) represent the copula density
function.

𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑐 (𝐹1 (𝑥1), 𝐹2 (𝑥2), ..., 𝐹𝑛 (𝑥𝑛))
𝑛∏
𝑖=1

𝑓𝑖 (𝑥𝑖 ). (4)

We can get the copula-augmented variational family:

𝑞(𝑧 |𝑥 ;𝜙, 𝜂) = 𝑐 (𝑄1 (𝑧1;𝜙) , . . . 𝑄𝑘 (𝑧𝑘 ;𝜙) ;𝜂)
𝑘∏
𝑖

𝑞 (𝑧𝑖 |𝑥 ;𝜙) . (5)

We substitute 𝑞(𝑧 |𝑥 ;𝜙, 𝜂) in Eq.(5) for 𝑞𝜙 (𝑧 |𝑥) in Eq. (2) to better
approximate the true posterior distribution.

To model our novel VGCI method, as depicted in Figure 1, we
first analyze the input data through an inference network and a
correlation network. The inference network is used to generate the
gaussian distributions parametrized by 𝜙 with various mean 𝜇𝑖 and
variance 𝜎𝑖 for each latent variable 𝑧𝑖 :𝑞𝜙 (𝑧𝑖 |𝑥) = (𝜇𝑖 , 𝜎2𝑖 ). The cor-
relation network is designed to generate the covariance matrix of
their joint distribution parametrized by 𝜂. In order to make the con-
structed covariance matrix Σ𝜂 positive semidefinite and real sym-
metric, we first make the following transformations:Σ𝜂 = 𝐼 + 𝜁𝜁𝑇 .
where 𝜁 is a vector with the same dimension as the latent vari-
able generated by the correlation network. 𝐼 is an identity matrix.
The constructed marginal distributions and the covariance matrix
are combined to produce the approximated posterior distribution
𝑞(𝑧 |𝑥 ;𝜙, 𝜂).

2.2 Conditioned Reparameterization and
Sampling

As illustrated above, we construct the joint distribution of latent
variables 𝑧 with respect to the mean, the variance of independent
distribution of each variable and their covariance matrix. In prac-
tice, it is difficult to sample from a multivariate joint distribution
where there exist interactions between variables. To overcome this
problem, we design a new sampling method from multivariate joint
distributions, which allows our model to better reparameterize the
latent variables and approximate the true posterior.

Suppose the dimension of latent variables is 𝐾 . First, we can
obtain matrix A by the Cholesky decomposition of the covariance
matrix Σ𝜂 such that Σ𝜂 = 𝐴𝐴𝑇 . Then we sample 𝜖 ∼ N(0, 𝐼 ) being
𝐾-vectors. By multiplication, we can make a sample 𝜉 = 𝐴 ·𝜖 where
𝜉 ∼ N(0, Σ). Note the 𝜉 and 𝑧 have the same covariance matrix, so
we can convert 𝜉 to 𝑧 via the following transformation:

𝑧𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑄−1
𝜙

(𝑧𝑖 |𝑥) (Φ(
𝜉𝑖

𝜎𝑖
)), (6)

where 𝜎𝑖 is the standard deviation of 𝜉𝑖 , 𝑄𝜙 (𝑧𝑖 |𝑥) is the CDF of
𝑞𝜙 (𝑧𝑖 |𝑥) and Φ(·) is the CDF of the standard Gaussian. Compared
to the reparameterization trick used in VAE and previous generative
recommendation models, our sampling strategy not only incorpo-
rates the uncertainty of user interest, but also accounts for the
correlations of latent variables. Therefore, rather than relying on
mean-field to sample independent variables, our method is encour-
aged to learn the relations between different attributes through the
conditioned posterior of the variables. In the process of producing 𝑧,
we use above reparametrization trick to ensure that the stochastic-
ity in the sampling process is isolated and the gradient with respect
to 𝜙 and 𝜂 can be back-propagated through the sampled 𝑧 and 𝜉 .

2.3 Parameter Estimation
We can use the sampled 𝑧 to obtain an unbiased estimate of LELBO
and optimize it with stochastic gradient ascent. The LELBO is as
follows:



Variational Autoencoder with Copula for Collaborative Filtering DLP-KDD 2021, August 15, 2021, Singapore

LELBO = E𝑞𝜙 (𝑥) [log 𝑝𝜃 (𝑥 |𝑧)] − E𝑞𝜙 (𝑥)

[
log

𝑞𝜙 (𝑧 |𝑥)
𝑝𝜃 (𝑧)

]
= E𝑞𝜙 (𝑥) [log 𝑝𝜃 (𝑥 |𝑧)] − E𝑞𝜙 (𝑥)

[
log

∏𝑛
𝑖 𝑞𝜙 (𝑧𝑖 |𝑥)
𝑝𝜃 (𝑧)

]
− E𝑞𝜙 (𝑥)

[
−1
2
log|Σ𝜂 | +

1
2
𝜉𝑇 (𝐼 − Σ−1𝜂 )𝜉

]
,

(7)

where the first term is the reconstruction cost, and the second and
third terms are the KL divergence for typical VAE and copula, re-
spectively. From Eq.(7) we can observe that LELBO is a function of
parameters 𝜙 , 𝜃 and 𝜂. As the true distribution E𝑞𝜙 (𝑥) [log𝑝𝜃 (𝑥 |𝑧)]
is difficult to calculate, we use Monte Carlo method for gradient
ascent of this term. The training procedure is summarized in Algo-
rithm 1.
Algorithm 1 The training of Copula-VAE.

Input: Users-item interaction matrix 𝑋 ∈ R𝑈×𝐼

1: Randomly initialize 𝜃 , 𝜙 , 𝜂
2: while not converged do
2: Sample a batch of usersU
3: for all user 𝑢 ∈ U do
3: Sample 𝜉 and 𝑧𝑢 from the generative process
3: Compute noisy gradient ∇𝜃L, ∇𝜙L and ∇𝜂L with 𝜉 ,𝑧𝑢
4: end for
4: Average noisy gradients from batch
4: Update 𝜃 , 𝜙 and 𝜂 via stochastic gradient ascent
5: end while
6: return 𝜃 , 𝜙 and 𝜂

In practice, the kl-annealing factor is usually used to control the
strength of regularization:

LELBO = E𝑞𝜙 (𝑥) [log𝑝𝜃 (𝑥 |𝑧)] − 𝜆 · (KL1 + KL2), (8)

where KL1 and KL2 are the second and third terms of Eq.(7), i.e.,
the marginal KL divergence in typical VAE and the copula KL, re-
spectively. Here, we use kl-annealing [1] to train our model starting
with 𝜆 = 0, and gradually increasing to a certain threshold. We pro-
pose using 𝜆 ≠ 1, which means that we are no longer optimizing a
lower bound on the log marginal likelihood. If 𝜆 < 1, we are also
weakening the influence of the prior constraint 𝑝 (𝑧) = N(𝑧; 0, 𝐼𝑘 ).
Recommendation:Given a user’s click history 𝑥 , we can sample 𝑧
from the generated multivariate joint distribution of latent variables
using our trained model. The decoder transforms sampled 𝑧 into
scores of each item to this user. In a typical top-K recommendation
system, we take the top-K value as the prediction items for this
user.

3 EXPERIMENT
Dataset:We conduct our experiments on three datasets:MovieLens-
100K (ML-100K), Movielens-1M (ML-1M), and Gowalla. Table 1
summaries the statistics of the datasets.

Table 1: Descriptive statistics of datasets.

Dataset #users #items #rating density
ML-100K 943 1682 100000 6.3%
ML-1M 6940 3952 1000209 3.65%
Gowalla 29858 40981 1027370 0.084%

ImplementationDetails: To be consistent with the previous mod-
els, we adopt the same architecture in our model. The overall ar-
chitecture is [𝐼 → 600 → 50 → 600 → 𝐼 ]. We also utilize the data
pre-processing and model evaluation techniques specified in previ-
ous work [7]. We set the learning rate of our model 𝛼 to 0.001 and
train it with Adam [6]. We use NDCG@20, NDCG@100, Recall@50
as metrics to evaluate the performance of all models.
Baseline Models:We compare the performance of our model with
the following baselines:

• WMF [5]: A matrix factorization method for item prediction
from implicit feedback.

• SLIM [8]: A linear model which learns a sparse aggregation
coefficient matrix by solving an ℓ1-norm and ℓ2-norm regularized
optimization problem.

• NeuMF [4]: It uses a neural network to capture the nonlinear
feature interactions of user and item embeddings.

• CMN [2]: A memory-based model learns a user-item specific
neighborhood by encoding complicated user-item relations with
the neural attention mechanism.

• NGCF [11]: This is a graph-based CF method, mainly following
the standard GCN, including the use of nonlinear activation and
feature transformation.

• CDAE [5]:An augmented standard denoising autoencoderwhich
adds the latent factor to the input data.

• Mult-VAE [7]:AVAE-based CFmodel that introduces a different
regularization parameter in the learning objective and tunes
parameters using annealing.

Experimental Results: Table 2 summarizes the performance com-
parisons between our method and baseline approaches, which
demonstrates that our model GCVAE achieves the best performance
across all the datasets in terms of all metrics. Notably, we can see
that linear models (WMF and SLIM) are not competitive. Com-
pared to linear models, the neural network-based models exhibit
better performance. Mult-VAE generally outperforms other base-
lines, but the improvement is insignificant. For example, CDAE, as
a deterministic autoencoder-based approach, achieves comparable
performance with Mult-VAE, which suggests that the vanilla VAE
approach may not fully capture the true user-item interactions. The
main reason lies in the independent variable modeling in Mult-VAE,
which ignores the dependence between variables that may facilitate
the user and item representation learning and thus the recommen-
dation performance. This assumption can be proved by the result
that our GCVAE achieves significant improvement over Mult-VAE.
Clearly, this performance gain is attributed to GCVAE’s ability of
capturing salient correlations among latent variables, which leads
to a better approximation of the true posterior distribution.

To investigate the effectiveness of the reparameterization trick
that we tailored for the generative recommendation, we implement
a variant of GCVAE, called GCVAE∗, which replaces the sampling
process in GCVAE with the reparameterization used in genera-
tive tasks. The fact that GCVAE∗ generally outperforms Mult-VAE
proves the effectiveness of Gaussian copula. However, merely mod-
eling the latent variables with copula still shows the inferior per-
formance of GCVAE∗ compared to GCVAE. The performance gain
of GCVAE not only proves the effectiveness of our new sampling
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Table 2: Performance comparison on three datasets.

ML-100K ML-1M Gowalla
NDCG@20 NDCG@100 Recall@50 NDCG@20 NDCG@100 Recall@50 NDCG@20 NDCG@100 Recall@50

WMF 0.283 0.389 0.530 0.266 0.353 0.411 0.092 0.157 0.231
SLIM 0.292 0.401 0.528 0.281 0.364 0.424 0.114 0.169 0.256
NeuMF 0.295 0.402 0.543 0.277 0.364 0.427 0.113 0.169 0.253
CMN 0.297 0.411 0.546 0.278 0.385 0.434 0.114 0.171 0.255
CDAE 0.305 0.419 0.557 0.288 0.376 0.434 0.121 0.178 0.267
NGCF 0.310 0.425 0.568 0.298 0.381 0.439 0.123 0.182 0.267
Mult-VAE 0.311 0.427 0.572 0.295 0.387 0.446 0.124 0.183 0.278
GCVAE∗ 0.315 0.432 0.576 0.299 0.395 0.450 0.122 0.180 0.271
GCVAE 0.327 0.437 0.590 0.301 0.398 0.458 0.129 0.187 0.283

(a) ML-100K (b) ML-1M

Figure 2: Parameter sensitivity of GCVAE.

method that may largely help the model generate better recommen-
dation results, but also suggests that the generative recommender
systems can learn better representations through approximating
real posterior distributions rather than relying on simple Gaussian
assumption of latent variables.

(a) NDCG@100 (b) Recall@50

Figure 3: Convergence of GCVAE and GCVAE∗

Finally, we study the influence of kl-annealing factor 𝜆, which
is an important parameter in VAE-based recommender systems.
We first conduct a grid search of the best value of 𝜆 and plot the
results in Figure 2, which suggests that GCVAE achieves the best
performance with a small value of 𝜆, i.e., 0.3 on ML-100K and 0.5
on ML-1M. In addition, we present the training procedure of our
model on Gowalla dataset in Figure 3, which demonstrates that our
models (GCVAE and GCVAE∗) can quickly converge to the best
performance with a few epochs.

4 CONCLUSION
Wehave introduced copula into the VAE-based recommender frame-
work, which enables us to capture the correlations between latent
variables via a covariance matrix. The distribution of latent vari-
ables captured by our novel VGCI is close to the true posterior
distribution. Subsequently, using the novel reparametrization tech-
nique we designed in the sampling process, we are able to generate
better latent representations which are used to obtain better rec-
ommendation performance. Extensive experiments show that our
model outperforms several state-of-the-art baselines.
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