What Do We Need for Industrial Machine Learning Systems?
Bernoulli, A Streaming System with Structured Designs

Qiang Luo, Xiang-Rong Sheng, Jun Jiang, Chi Ma
Shuguang Wang, Haiyang He, Pengtao Yi, Guowang Zhang
Yue Song, Guorui Zhou, Hongbo Deng, Xiaoqiang Zhu
sherlock.lq,xiangrong.sxr,chuncao.jj,beiji.mc
yuanchu.wsg,haiyangg hhy,youdan.ypt,guowang.zgw
yue.song,guorui.xgr,dhb167148,xiaoqiang.zxq@alibaba-inc.com
Alibaba Group
Beijing, China

ABSTRACT

Machine learning has empowered Internet businesses, such as
search engines, recommender systems, and online advertising. How-
ever, far less attention focuses on developing efficient industrial
machine learning systems for these services. Industrial business
services have the characteristics of structured data that dynamically
change and come as a stream, strong demand for algorithm iteration,
and limited resources budget for many business scenarios. Directly
applying off-the-shelf systems for these services causes issues such
as delayed model updates, slow experiment cycles, and inefficient
resource usage. The reason is that the general-purpose design of
current mainstream systems doesn’t take the characteristic of these
industrial machine learning tasks into consideration.

In this paper, we present Bernoulli, a streaming system devel-
oped for industrial machine learning tasks. Bernoulli builds on
online streaming data, where machine learning models are directly
experimented with and deployed on the streaming data. In contrast
to the conventional manner that keeps separate offline iteration and
online deployment pipelines, Bernoulli unifies these two pipelines,
enabling algorithm iteration on online streaming data and allowing
the model to refresh in real-time. Models can then be seamlessly
deployed into production, saving resources and human cost. The
core design principle of Bernoulli is building the system in a struc-
tured manner throughout the entire flow by utilizing the structured
character of industrial data. We will describe the functionality of
each component behind the design. Facilitated with Bernoulli, the
engineering teams can directly experiment with new approaches
on online streaming data, manipulate the training data easily for
more types of algorithm trials, reduce resource consumption, and
obtain high-quality fresh models for online serving. At present,
hundreds of Alibaba services have used Bernoulli in production,
showing compelling performance.

KEYWORDS

Machine learning system; continuous learning; neural networks

1 INTRODUCTION

Machine learning has driven advances in many application domains,
ranging from computer vision [9, 25], natural language process-
ing [6, 10, 23] to reinforcement learning [29]. One key element
of the advances is the rapid development of the general machine

learning systems [1-4, 20], on which researchers can explore new
ideas conveniently.

Recently, there is a wide-spread trend of utilizing machine learn-
ing to empower online businesses, such as search engine [8], rec-
ommender system [5, 24, 30] and online advertising [31, 32]. These
industrial applications have the following characteristics: (a) struc-
tured data that dynamically change and come as a stream. These
make these industrial applications different from applications with
static data such as computer vision. Figure 1 shows the typical data
units in industrial applications. (b) A large number of business sce-
narios with only limited resources. (c) Strong demand for algorithm
iteration to improve user satisfaction and business revenue. Here,
the term “algorithm iteration” refers to experiment with new ap-
proaches. which includes two aspects in industrial applications: (1).
Data-level iteration. Data-level iteration further includes feature
iteration and sample iteration. Feature iteration means changing
the feature description of samples, e.g., adding or deleting features.
On the other hand, sample iteration operates data on the sample
level. Sample iteration includes but is not limited to altering the
labels of samples, augmenting or downsampling samples, and data
fusion from multiple sources and tasks. (2) Model-level iteration.
Model-level iteration refers to experimenting with novel model
architectures, optimization algorithms, loss functions, and other
advanced techniques at the model level.

In contrast to the rapid development of algorithms, far less at-
tention focuses on the equally important problem of developing
powerful machine learning systems for industrial applications. Di-
rectly applying off-the-shelf systems neglecting the characteristic
of industrial machine learning tasks, causing issues such as delayed
model updates, slow experiment cycles, and inefficient resource
usage. To better utilize the characteristic of industrial machine learn-
ing tasks, we argue that a good industrial system design should
adopt the following principles:

(1) Data in industrial applications are structured, dynamically
changing, and come as a continuous stream. The models
should update continuously to keep fresh. A good system
design should enable models to refresh fast on streaming
data.

(2) To pursue performance improvement for online businesses,
the design choice should accelerate algorithm iteration.

(3) Industrial applications often have to deal with various busi-
ness scenarios simultaneously with limited resources. These

DLP-KDD 2021, August 15, 2021, Singapore

Figure 1: An example of structured data units in industrial
applications, where basic data units are connected with each
others by various relations. For each page view (PV) from an
user, it displays a set of items. Each <user, PV, item> triplet
constitute a new data unit. The data unit of user contains in-
formation regarding the user and the data unit of item con-
tains information about the item.

tasks have commonalities. It is desirable for the system to
reuse resources effectively.

In this paper, we present Bernoulli, a streaming system with
structured designs adopting these principles. Bernoulli builds on
online streaming data, where machine learning models are directly
experimented with and deployed on the streaming data. The core
design principle of Bernoulli is implementing the system in a struc-
tured manner throughout the entire flow by utilizing the struc-
tured character of industrial data. To this end, Bernoulli integrates
structured data processing pipeline, structured samples, structured
model training, and structured online serving into one system. Fa-
cilitated with Bernoulli, the engineering teams can directly experi-
ment with new approaches on online streaming data, manipulate
the training data easily for more types of algorithm trials, reduce
resource consumption, and obtain high-quality fresh models for
online serving.

Up till now, Bernoulli has been deployed in production at the
display advertising system of Alibaba, serving the core commercial
advertising services. We describe the functionality of each com-
ponent behind the design. We also present the case study of one
deployment of Bernoulli, where Bernoulli helps us fuse the training
data easily for multiple scenario CTR prediction [28]. At present,
hundreds of Alibaba services have used Bernoulli in production,
showing compelling performance. We believe the structured design
philosophy, techniques, and lessons learned will drive forward the
development of industrial machine learning systems.

2 RELATED WORK

Machine learning systems have been continuously contributing to
the successful application of machine learning techniques [1, 14—
18, 26, 27]. In academic research, most of the focus is placed on ex-
ploring new ideas, ranging from novel model architectures [9], opti-
mization algorithms [13], to other machine learning techniques [11].
The goal of academic experimentation is to validate the efficacy
of the proposed approaches. Therefore, the common workflow is

Zhou, Luo, Sheng, Jiang, et al.

e ~. ,/ 7777777 N ,/ 7777777 N - S
(Data IZ> Feature | Sample ! Model LNy Model “
1| Analysis Engineering | ‘ Construction |7 ‘ Training] } Serving |
! ! | I |

| | |
|
‘\ Structured | \\ Structured ,‘ \\ Structured ,‘ I Structured I
AN Data Pipeline // . Sample N Training L ‘\ Serving 7

Figure 2: A high-level component overview of Bernoulli.

relatively simple: researchers first prepare the data by themselves
and train a model based on an open-source machine learning li-
brary such as PyTorch [20] and TensorFlow [1]. The model is then
evaluated on the test data. However, the workflow becomes way
more complicated when facing Internet online services, where data
are streaming, dynamically changing, large-scale, and often high-
dimensional and extremely sparse [12]. In concrete, the workflow of
deploying machine learning models on industrial serving includes
data processing pipeline, storage of samples, model training, and
online serving.

Most current machine systems implement a subset of the afore-
mentioned components of the workflow. Some systems mainly fo-
cus on analyzing and processing data at large scales, such as Apache
Flink [7]. Some systems are developed to ease the training of ML
algorithms. The representative systems include TensorFlow [1],
MXNet [4], PyTorch [20] and XDL [12]. There are also some serv-
ing systems, like TensorFlow-serving [19], designed for production
environments. However, these systems all focus on a subset of
challenges for deploying machine learning models on production.

As mentioned above, industrial machine learning systems should
support fast algorithm iterations on online streaming data, reducing
resource consumption, and continuously producing fresh models.
Besides, it should ease the difficulty of experimenting with multiple
models, serving multiple models at production simultaneously for
industrial applications. Different from the aforementioned systems,
Bernoulli provides a structured design system that incorporates data
processing pipeline, storage of training samples, model training, and
online serving into one system. By this means, Bernoulli enables
experiment new approaches on online streaming data quickly with
relative ease while increasing the scalability and stability of online
serving.

The work that is most similar to Bernoulli is TensorFlow Ex-
tended (TFX) [2], a TensorFlow-based machine learning platform
implemented at Google. TFX also supports continuous training and
serving with production-level reliability. The main difference is that
TFX is designed for general-purpose machine learning. In contrast,
Bernoulli focuses on industrial machine learning services, which
lays great emphasis on model freshness, algorithm iteration on on-
line streaming data, utilization of industrial structured data to reuse
resources. To this end, Bernoulli adopts the structured design phi-
losophy throughout the entire workflow, including structured data
processing pipeline, structured samples, structured model train-
ing, and structured online serving. Our current experience with
Bernoulli is encouraging, hundreds of online commercial services
at Alibaba have been deployed on Bernoulli and the online serving
shows compelling performance.

What Do We Need for Industrial Machine Learning Systems? Bernoulli, A Streaming System with Structured Designs

3 OVERVIEW OF BERNOULLI

In industrial applications, there are lots of machine learning tasks
running simultaneously on the system with changing and struc-
tured data. Figure 2 shows a schematic workflow overview of de-
ploying machine learning models into production, which consists
of data analysis, feature engineering, sample construction, model
training, and model serving. Instead of building each component
in isolation and simply stitching them together, Bernoulli unifies
the structured design philosophy throughout the entire workflow.
At a high level, Bernoulli instantiates a pipeline that involves struc-
tured data pipeline, structured samples, structured training, and
structured serving:

o Structured data pipeline. Current machine learning sys-
tems often treat each learning problem independently and
construct training data separately. However, industrial data
from different tasks and experiments often share most of
the information. For example, when feature iteration needs
to add a new feature to current samples, it only differs
from the previous data by a single feature. To allow effi-
cient reuse of the data, Bernoulli adopts the structured data
pipeline. The structured data pipeline extracts common infor-
mation from different tasks. This inter-task level information
reuse is achieved by abstracting dataflow at the basic data
unit level. The task-specific dataflow is assembled by the
time the dataflow is consumed. The structured data pipeline
saves storage and computation costs significantly. By this
means, Bernoulli supports direct algorithm iteration on on-
line streaming data, where each task can construct its own
specific online dataflow and complete training and infer-
ence. The structured data pipeline accelerates the velocity
of algorithm iteration while reducing the development cost.

e Structured samples. Basic data units in the industry con-
tain heterogeneous information and connect with each other
by various relations. For example, a data unit of a user might
contain the behavior data and other user information. The
conventional way to solve a machine learning task is to con-
catenate all the data units the task needed to obtain the most
fine-grained data units as input features. We will refer to
the fined-grained data units as plain samples. Plain samples
will be fed as the input of the task. However, there is a lot of
redundancy in plain samples. For example, a user’s informa-
tion might occur multiple times in different samples. In this
situation, the data of this user will be stored repeatedly by
multiple times, causing redundancy. To address this issue,
Bernoulli adopts the structured design philosophy, which
maintains the structured information. This is achieved by
the design of structured samples. Structured samples reuse
common information and compress plain samples to a large
extent. The structured information is maintained until the
data is consumed.

e Structured training and serving. Data from the indus-
trial applications are high dimensional and extremely sparse,
which makes it different from applications with dense and
static data such as image classification. The common way
to model the high dimensional sparse data is to transform it
into low dimensional embeddings firstly and then treat it like

DLP-KDD 2021, August 15, 2021, Singapore

dense data. Keeping separate embeddings per model brings
serious storage and computational challenges to the system,
especially when multiple services with hundreds of serving
and experimenting models are running simultaneously. In
Bernoulli, we adopt the principle of structured training and
serving, which is achieved by structured embedding. Struc-
tured embedding means that different tasks share the same
embeddings. The use of structured embedding is motivated
by the observation that embeddings contains some extent
of task-agnostic semantic information and can be reused.
Therefore, Bernoulli let different tasks share most of the
embeddings while also keeping a small set of private embed-
dings. By this means, Bernoulli takes a structured training
manner, facilitating algorithm iteration. For instance, when
experimenting with new model structures, one can easily
use the shared embedding as initialization instead of training
it from scratch, which accelerates the training process.

The structured embeddings also allow structured serving,
which relieves the storage and computational burden while
enhancing the stability and scalability of online serving. At
the same time, the structured serving decouples the update of
embeddings and other parts of the model. Since embeddings
account for most of the parameters, only refreshing other
parts of the model enables more frequent model updates,
achieving better freshness.

Overall, Bernoulli builds these components to adhere to the afore-
mentioned design principles and seamlessly integrating these com-
ponents into a single system. The structured design allows engi-
neering teams to make fast algorithm iterations and improve the
performance of online serving. In what follows, we will describe
these components in detail and explain how these components con-
tribute to the fast algorithm iteration and improve online services
at Alibaba.

4 STRUCTURED DATA PIPELINE

Data in industrial applications are organized in a structured manner
naturally, where basic data units are connected with each other by
various relations. Take click-through rate (CTR) prediction as an
example, for each page view (PV) from a user, it displays a set of
items. Each <user, PV, item> triplet constitute a new data unit. The
data unit of users contains information regarding user behavior and
user profile and the data unit of item contains information about
the item like the price. users are connected with items through the
page views. To utilize the data characteristic, Bernoulli employs a
structured data pipeline.

In this section, we first introduce sample skeleton in Bernoulli,
which is defined as the reusable units in the structured data pipeline.
Then we introduce our implementation of sample factory that ab-
stracts dataflow in the basic data unit level. The sample factory
takes the responsibility of combining the sample skeleton with
other data units to form the input data for each task. Finally, we
show how the structured data pipeline enables efficient algorithm
iteration on online streaming data, reduces resource consumption,
and saves development cost.

DLP-KDD 2021, August 15, 2021, Singapore

s Sample Skeleton N

Sample_id, User_id, Item_id, Timestamp, ... ‘ Gender, Age, City, Price, User behavior sequences, ... ‘

,,,,,,,,, Semplemetainfo Lebsks s Features

Figure 3: Sample skeleton for CTR prediction. The reusable
data unit is defined as the sample skeleton. In CTR predic-
tion, the sample skeleton consists of Sample_id that is the
unique ID for each sample, User ID, Item ID, Timestamp,
Click label, and other basic features that can be used to join
other features like gender and age. Different tasks can com-
bine sample skeleton with other data to assemble its input
data format.

4.1 Sample Skeleton

The common way to organize input data for machine learning tasks
is to abstract data at the task-level. The task-level abstraction treats
each task independently and organizes task-specific data for each
task. In this situation, each experiment for a particular task requires
constructing a unique procedure of data processing pipeline. Al-
though the task-level abstraction supports a variety of data types,
this general-purpose design is not particularly suitable for indus-
trial data, where data are highly structured. In concrete, different
tasks often share the vast majority of the data and only differ by a
small portion. Task-level abstraction can cause large redundancy
and additional resource consumption. For example, if engineering
teams wants to experiment with new approaches, e.g., adding new
features to current samples, combining data from different sources,
they need to re-develop a new dataflow to construct its input data
format. The re-development is both inefficient and time-consuming,
which is due to the lack of flexibility and information reuse. As a
consequence, this conventional way of task-level abstraction is not
beneficial to algorithm iteration.

Different from the task-level abstraction, Bernoulli abstracts ma-
chine learning tasks from the basic data unit level. The motivation
of the data-level abstraction is to utilize the structured format of
industrial data to reuse resources. In particular, Bernoulli treats dif-
ferent data units as independent dataflows. For each task, Bernoulli
defines the reusable data unit as sample skeleton. Take CTR pre-
diction as an example, the goal of CTR prediction is to predict the
probability of the user to click the item. As shown in Figure 3, we
let the sample skeleton consist of Sample_id that is unique for each
sample, User ID, Item ID, Timestamp, Click label, and other basic
features that can be used to join other features like gender and
age. Other tasks can define its sample skeleton, and access other
dataflows to assemble its final data format. Then developers can
use the assembled final data to finish training and inference. The
data-level abstraction of Bernoulli allows efficient data iteration.
Different data iteration tasks can reuse the sample skeleton and
combine it with other dataflows to constitute the input data. The
structured data pipeline avoids the waste of resources of building a
whole new dataflow for each task.

4.2 Sample Factory

The structured data pipeline in Bernoulli is implemented by sample
factory, which consists of the log parser, feature center, feature

Zhou, Luo, Sheng, Jiang, et al.

/Scenario—S \
@:enario—Z \
Scenario-1 \

Feature
Center

Exp2
[Exp-1
Master
Sample
Builder

Data ‘ Data Feature
Flows Parser Joiner

R — T —

Sample
Pool /

Figure 4: The functionality of the structured data pipeline
is achieved by the sample factory. Sample factory abstracts
dataflow in the minimal basic data unit level, the input
dataflows are assembled by the time the dataflow is con-
sumed.

\Sample Fctory

joiner, sample pool, and sample builder. Figure 4 shows the structure
of the sample factory. The sample factory takes the raw dataflows
back flowed from online service as the input and output of the
target dataflow. The functionality of each component is given as
follows:

The raw data flows include sample skeleton, real-time fea-
tures, and other data units and are fed as input to the sample
factory.

Log parse is the module that parses input dataflows.

Feature center stores the feature that are less time-sensitive,

which we refer to these features as daily features.

e Feature joiner is the module that joins features from the
feature center and real-time dataflow to construct real-time
samples.

e Sample pool stores samples obtained from the feature joiner
in chronicle order. For each business scenario, the samples
that contain the set of features used in the serving model
are stored. The stored data can be used for the following
tasks, e.g., feature iteration. The samples will be stored in
the sample pool for tens of days.

Sample builder further processes the sample from the sam-

ple pool with features from feature centers to obtain the

final training samples for each task. For example, the sample
builder can sub-sample data or combining multiple dataflows
for sample iteration.

Facilitated with the sample factory, when building a new dataflow
for iteration, we can create a new sample builder. This sample
builder loads data from the sample pool and feature centers and
combines them to output the desired dataflow. For example, when
the engineering team needs feature iteration or sample iteration,
they can create a new sample builder to combine the samples from
the sample pool and feature center to generate the task-specific
samples. Overall, the sample factory reuses the basic information,
saving the resource consumption of building a new dataflow. This
implementation enables efficient data-level iteration, including fea-
ture iteration and sample iteration.

What Do We Need for Industrial Machine Learning Systems? Bernoulli, A Streaming System with Structured Designs

-

Plain Samples

DLP-KDD 2021, August 15, 2021, Singapore

Label | Key1 | Key2 | Key3 | 7 prmmmmmmnnte
Label ' indicator
0 o o
0 |

i ! indicator ; " indicator ; 1

i i : : : !
Key1 | ! ! 0 Key2 | ! ! Key3 | ! 1
oo P i !
L0 L .
ool P ; |
,,,,,,,,,, : 1
1

1

Feature & Indicator ,'

Structured Samples

Figure 5: An example of the construction of structured samples. Structured samples reuse common data units for each column.
Instead of storing all the data units, structured samples extract reusable data units and keep them as the dictionary. The indi-
cator indicates the position of the data unit in the dictionary. By this means, structured samples compress the plain samples

effectively.

4.3 Algorithm Iteration on Online Streaming
Data

The design of the sample pool that stores history samples in chron-
icle order enables fast algorithm iteration on online streaming data.
Concretely, to experiment with new approaches, the conventional
paradigm consists of three steps: 1. Generate data of the latest N
days. 2. Train a base model using the generated offline data. 3. Fine-
tune the base model using online streaming data. The reason why
this paradigm can not directly experiment with online streaming
data is that the model needs a large amount of training data to
converge. Since the conventional paradigm cannot cache histor-
ical samples, the model needs to wait for real-time data during
training, which is time-consuming. To accelerate the algorithm
iteration, it is a waste of development cost to generate offline data
from petabytes (PB) of raw log data. Different from this paradigm,
Bernoulli supports direct algorithm iteration on online streaming
data, which is achieved by the sample pool. Since the sample pool
caches data in chronological order, new experiments can use the
data in the sample pool for continuous training on fresh data. By
this means, the sample factory allows direct algorithm iteration on
online streaming data, saving resource consumption of building
offline training stage while supporting continuous training with
streaming arriving data.

5 STRUCTURED SAMPLES

As mentioned above, the conventional machine learning problem
measures each task as the basic entity, where data units are assem-
bled and consumed individually. Beyond this inter-task redundancy,
there also exists inner-task redundancy for industrial data. Take the
click-through rate prediction as the example, the conventional way
of constructing samples is collecting data units for each sample
individually. To predict a user’s preference toward an item, the
users’ features are gathered firstly and then concatenated with fea-
tures of the item to be predicted to construct samples. Here, we
refer to samples constructed in this manner as plain samples. In the
format of plain samples, if we want to predict the user’s preferences
towards N items, the user information is repeated by N times. In

other words, for a specific user, the redundancy grows linearly
with respect to the number of items to be predicted. The reason
for this redundancy is that plain samples neglect the structured
characteristic existed in data, resulting in a waste of storage cost
and high pressure on bandwidth.

To make full use of the reusable structure in industrial data,
Bernoulli organizes data units in the form of structured samples
as input instead of plain samples. Compared with plain samples,
structured samples reuse common information and compressing
data in a structured way. Figure 5 gives an illustration of how
structured samples are constructed. Given a batch of plain samples,
Bernoulli first extracts common data units for each column. The
reusable data units are then taken as the dictionary. With the help of
the dictionary, Bernoulli only needs to store the indicators of each
sample but not the data units. The design of structured samples
reduces duplicated features computation and drastically reduces
the storage space and the communication cost.

At Alibaba, there are billions of features and hundreds of billions
of samples. A large number of plain samples place great press on
the system. As a solution, the design choice of structured samples
reuses common information and compresses data to a large extent,
largely relieving the burden for the system. In practice, we find the
use of structured samples can compress plain samples significantly,
saving tremendous storage costs, reducing communication costs
while improving computational efficiency.

6 STRUCTURED TRAINING

Industrial data are streaming and the distribution is shifting dy-
namically. Therefore online serving models need to update their
parameters continuously with real-time data to keep fresh. In this
section, we introduce the structured training design of Bernoulli.
The main advantages of structured training are the ability to contin-
uously refresh the model and the support of fast algorithm iteration,
including data-level iteration and model-level iteration. Besides,
the structured training paradigm reduces resource consumption
significantly.

DLP-KDD 2021, August 15, 2021, Singapore

Sample I
Stream 1

Sample
Stream 2

Figure 6: Schematic data-level iteration of Bernoulli.

6.1 Freshness of Model

To capture the dynamic change of data in real-time, it is important to
use the real-time samples to update the model. As mentioned above,
the structured data pipeline utilizes the structure of industrial data
and views the basic data unit as the basic entity. Real-time features,
e.g., the latest clicked behaviors of users, are also abstracted as
the input dataflow. The sample factory takes the responsibility to
assemble real-time features and other features to obtain real-time
samples. The real-time samples are then used to refresh the model.

6.2 Efficient Algorithm Iteration

Bernoulli supports fast data-level iteration, including feature it-
eration and sample iteration. For each task, new features can be
easily combined with the sample skeleton for feature iteration. Be-
sides, different tasks can assemble the sample skeleton and relevant
dataflows to finish sample iteration. This is particularly useful for
data fusion from different business scenarios, as shown in Figure 6,
the following task is trained on the XDL [12] platform that is an
industrial deep learning framework for high-dimensional sparse
data. Thus, we can utilize the data from data-rich business scenarios
to facilitate the learning of data-poor business scenarios [28].

As mentioned above, the sample pool of sample factory caches
data for each task. The design of the sample factory enables efficient
algorithm iteration on online streaming data, however, training
a substantially deep model from scratch is still time-consuming.
This issue is even more serious when multiple algorithm iterations
are progressing simultaneously, which is common in industrial
business services. A simple solution is to early stop the training
stage, but the performance of early stopping is not able to catch the
performance of training with more mini-batches. To accelerate the
model-level iteration, Bernoulli implements the structured training
by the design of model-bank framework, as will be described in the
following.

6.3 Model-Bank: Structured Embedding

Industrial online businesses often have to deal with high-dimensional
and sparse data. Most industrial machine learning models with high-
dimensional sparse input follows the Embedding & Multi-Layer
Perceptron (MLP) paradigm [5, 12, 22, 32]. In particular, the em-
bedding module first transforms each discrete feature into a low
dimensional vector, i.e., embedding. The MLP module then aggre-
gates embeddings by various means, e.g., sum pooling, to obtain a

Zhou, Luo, Sheng, Jiang, et al.

Bank Task Task 1 Task N

 AEEER EEE N 11 | I
i | I
| | !
' AAEENR Ill} ; AEE I AEE
i | | I
I ! | i
! Public Embedding ! | Private Embedding ! | Private Embedding |
Bank Task Task 1 Task N

Figure 7: The structured embedding design of model-bank.
Different tasks share the same public embeddings while
keeping a small portion of private embeddings.

fixed-length vector. The fixed-length vector is fed as input into the
following fully-connected layers for final prediction.

Model-bank is motivated by the following observations: (1). The
vast majority of storage costs are consumed by the embedding
modules while the MLP modules only account for a small portion.
Take the online model at Alibaba as an example, the number of
parameters of embeddings exceeds 10 billion while the number of
parameters of MLP module is less than 10 million. (2). The embed-
dings have some degree of generality across different tasks while
the MLP module is more task-specific. Motivated by these observa-
tions, model-bank aims to utilize structured embeddings to improve
training efficiency. To be more concrete, structured embeddings
means decoupling the embedding module from the MLP module
and let different models share the same embeddings, which we will
refer to as public embeddings. The intuition behind the structured
embedding is that the embedding modules contain lots of semantic
information about the categorical feature, thus less relevant to a
specific task. Besides, we also observe that some features are less
general and contain task-specific information. To reduce the per-
formance gap, each task will also keep a small portion of private
embeddings. If a feature has private embedding, the final embedding
will be the private embedding, otherwise, the public embedding will
be used. Since most of the model parameters are occupied by em-
beddings, the efficient reuse of public embeddings reduces resource
consumption largely.

With the help of structured embeddings, when experimenting
with new model designs, one can easily use the public embedding as
initialization to warm up the training stage. The other parts of the
model are randomly initialized. In contrast to training the whole
model from scratch, the structured training strategy accelerates
model training significantly. Note that the model is trained on
XDL [12], but the structured system design of Bernoulli is not
limited to this specific framework. Besides, the structured design of
the model bank could also relieve the cold-start dilemma. Given a
new task, the online model gets poor performance until collecting
enough training data for training. As a remedy, the structured
embeddings can warm up the cold-start learning stages and enable
fast learning.

What Do We Need for Industrial Machine Learning Systems? Bernoulli, A Streaming System with Structured Designs

7 STRUCTURED SERVING

At Alibaba, there are hundreds of services with thousands of mod-
els running simultaneously on the online system. The large mem-
ory footprint and complicated computational logic bring serious
challenges to real-time prediction. The model-bank framework of
Bernoulli, inheriting the structured design principle, optimizes re-
source consumption while enables better model freshness.

7.1 Lower Resource Consumption

With the development of modern deep learning techniques, the
storage space of a model easily reaches TBs or even higher in indus-
trial systems. The storage pressure is even more serious considering
that each business scenario also maintains multiple versions of the
serving models and multiple experimenting models. Without the
structured reuse across different models, the resource consumption
could easily exceed the resource limit, thus restricting the quality
of online serving and the velocity of algorithm iteration. Facilitated
with the structured embedding, now different production and itera-
tion experiments can efficiently reuse public embeddings to relieve
the storage pressure and accelerate the model training. Since most
of the storage costs are caused by embeddings, the structured em-
bedding design can reduce the resource consumption significantly,
which strengthens the stability and scalability of online serving.

7.2 Freshness via Asynchronous Update

At Alibaba, online serving is especially time-sensitive due to the
dynamic change of users’ behavior and interest [21, 31, 32]. This
requires the model to update with real-time data frequently, how-
ever, update the whole model is time-consuming and also brings
serious computational pressure. To solve this issue, Bernoulli up-
dates the embeddings module and MLP module asynchronously.
The asynchronous update is motivated by the observation that em-
beddings contain some degree of semantic information about the
features and are less time-sensitive. On the other hand, MLP mod-
ules are more task-specific and require frequent updates. Motivated
by these facts, we let the embedding module and MLP module up-
date asynchronously in contrast to the common end-to-end learning
paradigm. Embeddings are updated less frequently than the MLP
module. Since the amount of parameters of MLP is much smaller
than embeddings, only refreshing the light-weight MLP module
reduces the computational cost and enable frequent model update,
giving better freshness. In other words, in addition to efficiency,
the framework of model-bank also enables the online model for the
update in real-time.

To be more concrete, Bernoulli updates the public embedding
offline every few days, while update the MLP module and private
embeddings in real-time. This trade-off between model freshness
and resource consumption allows our serving system to maximize
its serving quality. Overall, the structured serving relieves resource
consumption burden while obtaining high-quality fresh models for
online serving.

8 EVALUATION AT ALIBABA

Up to now, hundreds of commercial services at Alibaba have used
Bernoulli for production and algorithm iteration. In this section,

DLP-KDD 2021, August 15, 2021, Singapore

Table 1: Improvement of iteration efficiency brought by sam-
ple factory.

Method ‘ Time of iteration
Offline training followed by online fine-tuning Days
Direct iteration on online streaming data Hours

Table 2: Compression ratio of structured samples compared
with plain samples.

‘ Streaming data Daily data

: : 1
Compression ratio ‘ i 7

L\)l"‘

we first report the performance improvement brought by Bernoulli.
Then we will present a case study in detail.

8.1 Results from Production Deployment

The structured pipeline abstracts basic data units as the dataflows,
enabling direct algorithm iteration on online streaming data. By
this means, the algorithm iteration has been accelerated signifi-
cantly. Since structured dataflow of reuses common and structured
information, we only need little development cost to combine mul-
tiple dataflows to obtain the specific dataflow for each task. The
effort of building offline data pipelines can be saved. As shown in
Table 1, the previous paradigm that is offline training followed by
online fine-tuning needs a few days to finish algorithm iteration. In
contrast, direct algorithm iteration on online streaming data only
needs a few hours. This structured data pipeline reduces the devel-
opment and time cost, which is beneficial to algorithm iteration.
This paradigm is especially suitable for starting new business ser-
vices. With the help of Bernoulli, we start our short video business
from scratch quickly. The result is promising, the view count is
improved by 5.8% compared with the previous paradigm thanks to
the fast iteration.

Compared with plain samples, the structured samples can com-
press data to a large extent. This structured design saves storage
and computation costs significantly, as it reduces duplicated em-
bedding vector computation and storage. In Guess What You Like,
the scenario in the Taobao App homepage, the structured samples
compress streaming data to 4—11 on our production system. The result
is even more encouraging on daily data (data that are produced ev-
ery day but not in real-time). In contrast to streaming data that are
sorted in chronological order, daily data can be shuffled for a larger
compression ratio. In Bernoulli, the daily data can be compressed
to 1—12 thanks to the structured samples.

Compared with keeping separate and private models for each
task and experiment, the model-bank framework reuses the struc-
tured embedding thus reduces resource consumption. The com-
parison of model-bank and keeping separate models is shown in
Table 3. Suppose there are N serving and experimenting models
running concurrently on the system, reusing embeddings could
save storage cost to approximately % This is due to the fact that
public embeddings often reach TBs while other parts of the model
are less than 1 GB. On the other hand, only update the light-weight

DLP-KDD 2021, August 15, 2021, Singapore

Table 3: The resource consumption ratio of model-bank
compared with the separate models (suppose there are N
serving and experimenting models running concurrently on
the system).

‘ Storage cost Communication cost

Model-bank ‘ = ﬁ ~

z-

Table 4: The frequency of fresh models being deployed into
production.

Method ‘ Frequency
End-to-end Update 3 hours
Asynchronous Update | 10 minutes

MLP and private embeddings also reduces the communication pres-
sure. The communication cost is also saved to approximately ﬁ On
our online business, N often exceeds a thousand, thus the reduced
resource consumption is very impressive.

In the online serving environment, the freshness of the model is
important. Updating all models end-to-end every a few minutes is
infeasible considering computational capability. As the trade-off, the
asynchronous update of the model bank enables continuously push
fresh models into the production environment. As shown in Table 4,
Bernoulli can produce fresh models at minute-level compared with
the hour-level freshness previous system. In practice, we find the
model freshness improves the system performance significantly.

Overall, our online businesses have been benefited a lot from
the structured design of Bernoulli. Up to now, hundreds of business
scenarios have been deployed on Bernoulli, facilitating real-time
updates and improving user satisfaction and income.

8.2 Case Study: Data Fusion from Multiple
Business Scenarios

One advantage of the structured data pipeline is the ease of data
fusion from different business scenarios. At Alibaba, there are a
large number of business scenarios, ranging from Guess What You
Like in Taobao App homepage, Banner of Taobao App homepage,
to other scenarios. The amount of data from different business
scenarios differ by orders of magnitude. How to obtain effective
models for data-poor scenarios places a serious challenge.

In practice, we find it is of importance to utilize the data from
data-rich business scenarios to facilitate the learning for data-poor
business scenarios. The reason is that different business scenarios
have overlapping user groups and items, thus exist commonali-
ties. Enabling information transferring from data-rich scenarios to
data-poor scenarios is beneficial for model learning. However, con-
ventional machine learning systems are hard to combine dataflows
from different scenarios. By contrast, Bernoulli utilizes the struc-
ture in data and abstract dataflow at the basic data unit level, which
allows engineering teams to add or delete data from a particular
scenario easily. Multiple dataflows can be assembled from different
business scenarios flexibly.

Zhou, Luo, Sheng, Jiang, et al.

i)

Scenario-N

|
! |
@ =Ry
| |
! I
! |
! |

Partitioned Normalization

EEEEEEEERE EEEEEE |
|
EEEEEEEEE EEEEEE |
|
|
Shared Embedding Layer !
i S |
| |
et R
! |
|
]

User behavior sequence

Figure 8: Data fusion assists the learning for data-poor sce-
narios. . The structured data pipeline eases the difficulty of
data fusion from multiple business scenarios.

In production, data fusion from multiple business scenarios al-
leviates the difficulty of learning for scenarios with little data. In
detail, we model the CTR prediction for multiple business scenarios
simultaneously and propose Star Topology Adaptive Recommender
(STAR) for multi-scenario CTR prediction [28]. In STAR, one model
is learned to serve all data-poor scenarios. The model architecture
is shown in Figure 8. STAR has the star topology, which consists of
the shared centered parameters and scenario-specific parameters.
The shared parameters are used to learn commonalities of all sce-
narios and the scenario-specific parameters capture the distinction
for more refined prediction. Overall, Bernoulli helps us fuse the
training data conveniently and the efficient reuse of model bank
helps save resource consumption largely, enabling stable online
serving. The result is promising, our online testing shows that the
CTR is improved by 8.0% and RPM (Revenue Per Mille) is improved
by 6.0% for all business scenarios.

9 CONCLUSION

We have discussed the desirable features for industrial machine

learning systems and presented our structured system design. Bernoulli

builds on online streaming data, where machine learning models
are directly experimented with and deployed on the streaming data.
The discussed desirable features are incorporated into the system.
The core principle of the system design is building Bernoulli in a
structured manner throughout the entire workflow including struc-
tured data pipeline, structured samples, structured model training,
and structured online serving. We have demonstrated how the
structured design of Bernoulli improves model freshness, facilitates
algorithm iteration on online streaming data, reduces system redun-
dancy, and improves online services. Our current experience with
Bernoulli is encouraging, hundreds of online commercial services
at Alibaba have been deployed on Bernoulli. More importantly,

What Do We Need for Industrial Machine Learning Systems? Bernoulli, A Streaming System with Structured Designs DLP-KDD 2021, August 15, 2021, Singapore

Bernoulli is continuously helping our engineering teams for exper-
imentation with new approaches, driven advances in our various
online services.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaogiang Zheng. 2016. TensorFlow: A System for Large-Scale

Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation. Savannah, GA, 265-283.

Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,

Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti

Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin

Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale

Machine Learning Platform. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada, 1387-

1395.

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich.

2019. Data Validation for Machine Learning. In Proceedings of Machine Learning

and Systems 2019. Stanford, CA.

[4] Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. Boston, MA, 191-198.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics. Minneapolis, MN, USA, 4171-4186.

[7] Ellen Friedman and Kostas Tzoumas. 2016. Introduction to Apache Flink: stream
processing for real time and beyond. " O’Reilly Media, Inc".

[8] Thore Graepel, Joaquin Quifionero Candela, Thomas Borchert, and Ralf Her-

brich. 2010. Web-Scale Bayesian Click-Through rate Prediction for Sponsored

Search Advertising in Microsoft’s Bing Search Engine. In Proceedings of the 27th

International Conference on Machine Learning. Haifa, Israel, 13-20.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition. Las Vegas, NV, 770-778.

[10] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics. Melbourne, Australia, 328-339.

[11] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings
of the 32nd International Conference on Machine Learning, Vol. 37. Lille, France,
448-456.

[12] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui

Huang, Xinyang Guo, Dongyue Wang, Yue Song, et al. 2019. XDL: An Industrial

Deep Learning Framework for High-Dimensional Sparse Data. In Proceedings of

the 1st International Workshop on Deep Learning Practice for High-Dimensional

Sparse Data. 1-9.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-

tion. In Proceedings of the 3rd International Conference on Learning Representations.

San Diego, CA, USA.

[14] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin,
and Michael I Jordan. 2013. MLbase: A Distributed Machine-learning System. In
Proceedings of the 6th Biennial Conference on Innovative Data Systems Research.
Asilomar, CA, USA.

[15] Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter, and Tawfiq Hasanin.
2015. A Survey of Open Source Tools for Machine Learning with Big Data in the
Hadoop Ecosystem. Journel of Big Data 2 (2015), 24.

[16] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In Proceedings of the 11th

5

=

[9

[13

USENIX Symposium on Operating Systems Design and Implementation. Broomfield,
CO, USA, 583-598.

[17] Jimmy J. Lin and Alek Kolcz. 2012. Large-scale Machine Learning at Twitter. In

Proceedings of the ACM SIGMOD International Conference on Management of Data.
ACM, Scottsdale, AZ, USA, 793-804.

Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean

Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,
and Ameet Talwalkar. 2016. MLIlib: Machine Learning in Apache Spark. Journal

of Machine Learning Research 17 (2016), 34:1-34:7.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. Vancouver, BC,
Canada, 8024-8035.

Qi Pi, Weijie Bian, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Practice
on Long Sequential User Behavior Modeling for Click-Through Rate Prediction.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. Anchorage, AK, USA, 2671-2679.

Yanru Qu, Han Cai, Kan Ren, Weinan Zha.ng, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In Proceedings
of thel6th International Conference on Data Mining. 1149-1154.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training.
https:// s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf (2018).

Steffen Rendle. 2010. Factorization machines. In Proceedings of the 10th Interna-
tional Conference on Data Mining. 995-1000.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115, 3 (2015), 211-252.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In Advances in
Neural Information Processing Systems 28. Montreal, Quebec, Canada, 2503-2511.
Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. San Francisco, CA, USA, 2135.
Xiang-Rong Sheng, Ligin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang
Luo, Siran Yang, Jingshan Lv, Chi Zhang, and Xiaogiang Zhu. 2021. One Model
to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR
Prediction. CoRR abs/2101.11427 (2021). arXiv:2101.11427 https://arxiv.org/abs/
2101.11427

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Kiittler, John P. Aga-
piou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen
Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P. Lillicrap,
Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ek-
ermo, Jacob Repp, and Rodney Tsing. 2017. StarCraft II: A New Challenge
for Reinforcement Learning. CoRR abs/1708.04782 (2017). arXiv:1708.04782
http://arxiv.org/abs/1708.04782

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation
in Alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. London, UK, 839-848.

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu,
and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate
Prediction. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence.
Honolulu, Hawaii, USA, 5941-5948.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui
Yan, Jungi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059-1068.

https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2101.11427
https://arxiv.org/abs/2101.11427
https://arxiv.org/abs/2101.11427
https://arxiv.org/abs/1708.04782
http://arxiv.org/abs/1708.04782

	Abstract
	1 INTRODUCTION
	2 Related Work
	3 Overview of Bernoulli
	4 Structured Data Pipeline
	4.1 Sample Skeleton
	4.2 Sample Factory
	4.3 Algorithm Iteration on Online Streaming Data

	5 Structured Samples
	6 Structured Training
	6.1 Freshness of Model
	6.2 Efficient Algorithm Iteration
	6.3 Model-Bank: Structured Embedding

	7 Structured Serving
	7.1 Lower Resource Consumption
	7.2 Freshness via Asynchronous Update

	8 Evaluation at Alibaba
	8.1 Results from Production Deployment
	8.2 Case Study: Data Fusion from Multiple Business Scenarios

	9 Conclusion
	References

