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ABSTRACT
Collaborative filtering (CF) methods based on Graph Convolu-
tional Networks (GCNs) have attracted great research interests and
achieved the state-of-the-art performance in recent years. How-
ever, all the existing GCN-based CF models achieve their best per-
formance with shallow layers, which fail to model higher-order
collaborative signal. Besides, most GCN-based CF models utilize
the same normalization rule for neighbor information aggregation,
leading a popularity-related importance (symmetric normalization)
or equal importance (left normalization) for neighbors. Due to the
intrinsic differences over nodes, different normalization rules are
suitable for them to aggregate neighbor information. In this work,
we propose a novel Deep Graph Convolutional Network with Hy-
brid Normalization (DGCN-HN) to alleviate the above limitations.
First, a deep graph convolutional network for recommendation
is designed which consists of residual connection and holistic
connection to alleviate the over-smoothing problem. It allows
the effective training of GCN with deeper layers. Then, a hybrid
normalization layer and a simplified attention network are
proposed to flexibly model the importance of neighbors by adap-
tively incorporating information from different normalization rules.
Comprehensive experiments on three real-world datasets show that
DGCN-HN achieves the best accuracy against the state-of-the-art
methods (12.12% and 12.77% relative improvement on average in
terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20). Further, we conduct a diver-
sity study compared with the best baseline. It demonstrates that
our proposed solution can achieve more diverse recommendation
results. Besides, in our extensive case study, we show that our pro-
posed method can benefit more for users having few interaction
history, which can be used for alleviate the data sparsity problem.

1 INTRODUCTION
Nowadays the demand of diverse and personalized recommenda-
tion becomes more and more stronger because of the information
overload in the web services, such as online video, news feeding
and shopping. It is a practical problem to recommend the most
suitable items for individual users from a rapidly expanding pool
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of candidates in real-world recommender systems. Collaborative
Filtering (CF) [19], which learns user and item representations from
their historical interaction data, is an effective way to capture user
preference by calculating the similarity between the user and items.
Various methods based on CF have been proposed for recommen-
dation [11, 15, 18, 25].

Recently, with the success of graph convolutional networks
(GCNs) [7, 13, 20, 23] on graph structure data, many practitioners
use GCNs and its variants to improve the performance of CF-based
model as the user-item interactions can be naturally viewed as a
bipartite graph. Graph Convolutional Matrix Completion (GC-MC)
[2] treats the recommendation task as link prediction and employs
a graph auto-encoder framework on the user-item bipartite graph.
Neural Graph Collaborative Filtering (NGCF) [21] propagates em-
beddings of users and items via utilizing multiple GCN layers to
capture high-order connectivity. Note that NGCF keeps the same
network design as GCNs, like feature transformation and non-linear
activation, which are found redundant in CF [3, 10]. Therefore, LR-
GCCF [3] removes non-linear activation, and LightGCN [10] takes
a further step that removes all transformation parameters and acti-
vation function existing in the convolutional layers, which greatly
improves the performance over NGCF.

Although GCN-based CF models have made great progress and
achieved the state-of-the-art performance, they still suffer from
two limitations. Firstly, most of the current GCN-based CF models
achieve their best performance with shallow models, i.e., Pinsage
[24] is 2-layer model, LR-GCCF and LightGCN [3, 10] are 3-layer or
4-layer models. Though deeper versions of LightGCN have access
to more neighbor information, it performs worse in recommenda-
tion. Such shallow architectures limit their ability to extract useful
information from higher-order neighbors, especially for sparse
nodes that have very few interactions, which makes it hard to learn
high-quality representation.

Secondly, most GCN-based CF models use a fixed normalization
rule for all nodes in graph during neighbor information aggregation.
For example, GraphSAGE [7] uses left normalization (also called as
random walk based normalization) that assigns same normalized
weights for different neighbors, while NGCF [21] and LightGCN
[10] use symmetric normalization that assigns smaller normalized
weights for popular neighbors and bigger weights for unpopular
neighbors. Each normalization has its own advantages. Without
loss of generalization, we take the viewpoint of users for illustra-
tion. When some popular items are not in the user’s interests, left
normalization performs worse than symmetric normalization as it
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assigns the same importance to interested items and uninterested
items, regardless their popularity. On the other hand, if some popu-
lar items are in the user’s interests, symmetric normalization will
cause the aggregation process fail to learn useful information from
these popular and interested items, because the normalized weights
of these items assigned by symmetric normalization are small (as
they are very popular). Thus using the same normalization rule
for all nodes is inflexible and sub-optimal. Besides, we explore the
effect of left normalization and symmetric normalization from the
perspective of accuracy and diversity.

We use a toy example to validate our argumentation as shown
in Figure 1. Firstly, considering higher-order connection, user 𝑢2
purchased iPhone, Computer before as he is interested in electronic
product. Thus he may be interested in Drone, which needs higher-
order neighbors to capture this underlying interested item. It shows
that failing to model higher-order neighbors may limit the rec-
ommendation performance. Secondly, we can see that the iPhone
was purchased by many people, like 𝑢1, 𝑢2 and 𝑢3. Different users
may buy iPhone with different motivations. 𝑢1 bought it for need
not for her interests, as her other purchased items are stationery
(i.e., Pen and Book). On the other hand, 𝑢3 bought iPhone driven
by his great interests on technology products as he bought some
other technology products (Computer and iWatch) which are not
so popular in the graph. If we use left normalization for all nodes’
information aggregation, then the electronic product items will be
recommended to 𝑢1 even though she has no interest in it. How-
ever, if we use symmetric normalization for all nodes’ information
aggregation, even though iPhone contains more related interest
information for 𝑢3, it has little importance because of its popularity
during aggregation process. Thus either using left normalization to
aggregation items’ information via the same importance, or using
symmetric normalization to distribute small weight for popular
items for all nodes’ aggregation process is unreasonable in some
cases.

DroneComputer iWatchiPhoneBookPen

Figure 1: An example of user-item interaction graph.

To tackle the above issues, we propose a novel graph convo-
lutional network-based recommendation framework, Deep Graph
Convolutional Network with Hybrid Normalization (DGCN-HN).

We first design a deep graph convolutional network for rec-
ommendation which includes residual connection and holistic
connection to avoid over-smoothing and train very deep graph
convolutional network. The residual connection is to sum the
previous layer’s node representation into the next layer’s repre-
sentation, which can facilitate shallow layer’s feature reuse and

gradient back-propagation. The holistic connection lets node rep-
resentations from all layers connect to the final representation to
get the combined representations. As different nodes may need
different aggregation layers, this connection can keep the previous
information to avoid over-smoothing. Figure ?? shows that our
proposed deep graph convolutional network for recommendation
enables successfully training of GCNs up to 8 layers deep with the
performance increasing steadily.

Secondly, we extend existing methods from fixed normalization
to hybrid normalization by combining left normalization and sym-
metric normalization adaptively for flexible modeling of neighbor
importance. Some nodes prefer left normalization for aggregating
neighbor information with equal importance and more diverse rec-
ommendation, while some nodes prefer symmetric normalization
to assign neighbor nodes with popularity-based importance and get
more personalized recommendation. The detailed analysis of accu-
racy and diversity trade-off can be seen in Sec 2.3. By employing the
hybrid normalization, our model can learn a more flexible weight
for each neighbor, leading to more accurate as well as more di-
verse recommendation. Moreover, to learn node representations by
adaptively incorporating information from different normalization
rules, a simplified attention network is proposed, to automatically
learn different weights for information from different normalization
rules.

To summarize, the main contributions of this paper are as fol-
lows:

1) We introduce a deep graph convolutional network for recom-
mendation to address the over-smoothing problem in the user-item
bipartite graph representation learning. Based on it, we learn a
10-layer model with great performance.

2) We propose to employ an adaptive hybrid normalization for
flexible modeling the importance of different neighbor nodes during
aggregation process so that it can adaptively incorporate neighbor
information, which improves both the accuracy and the diversity
of recommendation.

3) We perform extensive experiments on three real-world large-
scale datasets. The results demonstrate the superiority of our model
over state-of-the-art models, in terms of both accuracy and diversity.

2 PRELIMINARIES
2.1 Problem Formulation
We begin by describing the graph-based collaborative filtering
problem and introducing the necessary definitions and notations.
In a typical recommendation scenario, we have a set of 𝑀 users
U = {𝑢1, 𝑢2, ..., 𝑢𝑀 } and a set of 𝑁 items V = {𝑣1, 𝑣2, ..., 𝑣𝑁 }. As
user-item interactions can be regarded as a user-item bipartite
graph, we can denote a user-item interaction matrix Y ∈ R𝑀×𝑁 to
represent the interaction relations, where 𝑦𝑢𝑣 = 1means user 𝑢 has
interaction with item 𝑣 before, otherwise 𝑦𝑢𝑣 = 0. The user-item
bipartite graph can be also represented as G = ⟨U ∪V,A⟩, where
A is the adjacent matrix

A =

(
0 Y
Y⊺ 0

)
. (1)

Our problem is to learn user and item embeddings, where the
inner products between a user embedding and an item embedding
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represent how likely the user will choose the item. Eventually, we
recommend the top-𝐾 items to users.

2.2 Graph Convolutional Networks
Graph Convolutional Networks [13] was proposed to learn the node
embedding in a graph. The basic idea is to recursively aggregate
the embedding from neighbors to extract the structure proximity
information. Specifically, letH𝑙 ∈ R(𝑀+𝑁 )×𝑑𝑙 be the representation
of nodes at layer 𝑙 , where 𝑑𝑙 is the dimension of features at layer 𝑙 .
The forward propagation for embedding is defined as:

H𝑙+1 = 𝜎
(
ÃH𝑙W𝑙 ), (2)

whereW𝑙 ∈ R𝑑𝑙×𝑑𝑙+1 is the transformation matrix in layer 𝑙 with
trainable parameters, Ã is a normalization of adjacent matrix and
𝜎 (·) is some non-linear activation function. H0 is defined as the
initial node embeddings or features. We denote D as the degree
matrix of A. There are three typical normalization methods, i.e.,
left normalization or random walk normalization Ã = D−1A, sym-
metric normalization Ã = D−1/2AD−1/2 and right normalization
Ã = AD−1. We could also add self-loops to adjacency matrix as
A′ = A + I, where I is the identity matrix, and we denote the
corresponding degree matrix as D′. [13] adopts a symmetric nor-
malization over the adjacent matrix with self-loops. We can also
represent Eq.(2) in a message passing framework with embedding
vectors. To differentiate between users and items, let h(𝑙)𝑢 and h(𝑙)𝑣

represent the embedding of user 𝑢 and item 𝑣 in layer 𝑙 , we have

h(𝑙+1)𝑢 = 𝜎
( ∑
𝑣∈𝑁𝑢

Ã𝑢𝑣h
(𝑙)
𝑣 W𝑙 ), (3)

h(𝑙+1)𝑣 = 𝜎
( ∑
𝑢∈𝑁𝑣

Ãvuh
(𝑙)
𝑢 W𝑙 ), (4)

where 𝑁𝑢 , 𝑁𝑣 denotes the set of neighbor nodes of node 𝑢 and 𝑣 .
Specifically, taking central node of 𝑢 and neighbor node of 𝑣 as as
an example, Ã𝑢𝑣 is the corresponding element in Ã, Ã𝑢𝑣 =

1
|𝑁𝑢 | for

left normalization, Ã𝑢𝑣 =
1√

|𝑁𝑢 |
√
|𝑁𝑣 |

for symmetric normalization

and Ã𝑢𝑣 =
1

|𝑁𝑣 | for right normalization.

2.3 Normalization and Diffusion Algorithms
In this section, we aim to draw the link between the existing
diffusion-based algorithm in recommendations and the commonly
used normalization techniques in graph neural networks. And we
discuss their relationship to the metric of relevance and diversity
of the recommendation results.

[26] proposes a hybrid methods over heat-spreading algorithm
and probabilistic-spreading algorithm. In heat-spreading, weights on
users and items are recursively updated by averaging the weights
on their neighbors. In probabilistic-spreading, weights are evenly
distributed to neighbors, then every node collects the weights from
neighbors and updates its own weight by the sum of those re-
ceived weights. [26] shows that heat-spreading algorithm favors
unpopular items and gets better diversity in recommended results,
while probabilistic-spreading algorithm favors popular items and
gets more accurate recommendation. Their hybrid approach over
such two algorithms can achieve a balance between accuracy and
diversity.

Interestingly, the normalization methods have similar propa-
gation properties with the diffusion algorithms in [26]. Specifi-
cally, left normalization is similar to heat-spreading algorithm in the
sense that embedding from neighbors are averaged in Eq.(3) and
Eq.(4) with Ã𝑢𝑣 = 1

|𝑁𝑢 | . In right normalization with Ã𝑢𝑣 = 1
|𝑁𝑣 | ,

embedding of neighbors are divided by their own degree, and
eventually propagated to the central nodes, which is similar to
probabilistic-spreading algorithm. Besides, symmetric normalization
with Ã𝑢𝑣 =

1√
|𝑁𝑢 |

√
|𝑁𝑣 |

acts as a balance between left normaliza-

tion and right normalization. Although the intrinsic structure in
graph neural network models and the original diffusion algorithms
are not exactly equivalent, they at least share similar trend in terms
of the favor on unpopular items and popular items. Inspired by the
hybrid method for diffusion algorithms, we propose a hybrid nor-
malization method, in order to achieve both accurate and diverse
recommendation results.

3 METHOD
In this section, we introduce Deep Graph Convolutional Networks
with Hybrid Normalization (DGCN-HN), which is shown in Figure 2.
It consists of three main components. Firstly, a deep graph convolu-
tional network for recommendation with residual connection and
holistic connection is designed to deepen the model. Secondly, a
hybrid normalization layer is introduced for flexible modeling of
neighbor importance to improve recommendation accuracy and
diversity by combining left normalization and symmetric normal-
ization simultaneously. Thirdly, a simplified attention network is
proposed to adaptively incorporate information from the represen-
tation of different normalization methods.

3.1 Embedding Layer
In web-scale recommender system, user IDs and item IDs are usually
encoded as one-hot vectors. We first transform the IDs of users and
items into the embedding vectors:

e𝑖 = E · x𝑖 (5)
where E ∈ R(𝑀+𝑁 )×𝑑0 is the initial embedding table for users
and items, x𝑖 is the ID (one-hot vector) of an user or an item and
e𝑖 ∈ R𝑑0 is the gathered embedding, and 𝑑0 is the dimension of
initial embedding.

3.2 Deep Graph Convolutional Network for
Recommendation

Most of existing GCN-based collaborative filtering methods [3, 21]
update the node representations in (𝑙+1)-th layer by normalizing
and aggregating the representations of their neighbors in 𝑙-th layer.
The representations of user 𝑢 and item 𝑣 in (𝑙+1)-th layer can be
formulated as follows:

h(𝑙+1)𝑢 = agg(Ã𝑢𝑣h
(𝑙)
𝑣 ,∀𝑣 ∈ 𝑁𝑢 ) (6)

h(𝑙+1)𝑣 = agg(Ã𝑣𝑢h
(𝑙)
𝑢 ,∀𝑢 ∈ 𝑁𝑣) (7)

where agg(·) is an aggregation mapping function which maps the
normalized neighbor representations into an updated center node
representation.

Even though GCN makes great progress for node representa-
tion learning in CF task, we find that most GCN-based models
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Figure 2: Overall structure of DGCN-HN framework. Arrowed lines present the flow of information. Blue nodes represent users and green
nodes represent items. It takes the initial embedding of users and items as input, then predicts the preference of users to items. Best viewed
in color.
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Figure 3: A sketch map of deep graph convolutional network for
recommendation which includes residual connection and holistic
connection.

of recommendation achieve the best performance with a shallow
network structure. For example, Pinsage [24] is a 2-layer GCN, LR-
GCCF and LightGCN [3, 10] are the 3-layer or 4-layer GCNs. The
deeper layer will lead to the performance degradation because of
the over-smoothing issue, which states that representations from
different nodes become indistinguishable due to repeated propaga-
tion. Therefore, thesemodels only achieve sub-optimal performance
since they fail to capture the higher-order information, which is
useful especially for sparse nodes.

To further explore higher-order information and alleviate the
over-smoothing issue, we follow a similar architecture as Res-
GCN [14]. ResGCN [14] extends GCN into deeper layer with resid-
ual connection and output combination [8]. It shows great success in
the point cloud classification and segmentation task. However, the
aggregation layer is over parameterized in ResGCN if we perform it
directly in the collaborative filtering task. Prior works have demon-
strated empirically that the feature transformations and non-linear
activation functions are not necessary and might even degrade
the recommendation performance [3, 10]. Therefore, we remove
the transformation matrix and activation function in each aggre-
gation layer. Our proposed deep graph convolutional network for
recommendation can be depicted as in Figure 3. The linear aggre-
gation process of each layer can be re-formulated as a residual
connection:

h(𝑙+1)𝑢 =
∑
𝑣∈𝑁𝑢

Ã𝑢𝑣h
(𝑙)
𝑣 + h(𝑙)𝑢 , h(0)𝑢 = e𝑢 (8)

h(𝑙+1)𝑣 =
∑
𝑢∈𝑁𝑣

Ã𝑣𝑢h
(𝑙)
𝑢 + h(𝑙)𝑣 , h(0)𝑣 = e𝑣 . (9)

After 𝐿 layers’ aggregation, instead of using the final embedding
of each node for prediction, holistic connection combines the
embedding of all the layers (including the initial embedding) as
each node’s final feature representation, which is formulated as:

e∗𝑢 =
1

𝐿 + 1

𝐿∑
𝑖=0

h(𝑖)𝑢 (10)

e∗𝑣 =
1

𝐿 + 1

𝐿∑
𝑗=0

h( 𝑗)𝑣 (11)

Here we use an element-wise average aggregator as the informa-
tion fusion strategy of the final layer. Other alternatives such as
concatenation, attention aggregators can be further explored. Rep-
resentations of different layers contain information of different
receptive fields. Combining representations of all the layers is more
informative and is effective for alleviating the over-smoothing prob-
lem.

It is noted that NGCF [21], LR-GCCF [3] and LightGCN [10] use
a similar representation combination strategy to incorporate all the
layers as the final representation. However, they still fail to scale up
to the depth of a 5-layer architecture. This suggests that utilizing
the holistic connection alone in the context of collaborative filtering
task is not sufficient to extend GCN to a deep model.

3.3 Hybrid Normalization for Flexible
Modeling of Neighbor Importance

As depicted in Section 1, most of the existing GCN-based CF meth-
ods use one normalization rule for weighting different neighbors.
While for different nodes, the importance of neighbors is distin-
guished by the preference of central nodes, which results in a sub-
optimal result. As a result, we propose to use a hybrid normalization
strategy to assign weights to neighbors flexibly. It contains two
types of neighbor information.

3.3.1 Symmetric Normalization Representation Propagation. One
typical benefit of symmetric normalization is that it can distinguish
the importance of each neighbor by its popularity. Taking the user
side as an example. Following with the linear aggregation process
in Eq.(8), the representation propagation from items to users when

4



using symmetric normalization is defined as:

h(𝑙+1)
𝑢 =

∑
𝑣∈𝑁𝑢

1√
|𝑁𝑢 |

√
|𝑁𝑣 |

h(𝑙)
𝑣 + h(𝑙)

𝑢 (12)

3.3.2 Left Normalization Representation Propagation. In the rec-
ommendation scenario, sometimes the importance of the neighbor
nodes should not be linked to their neighbor nodes’ degree. For
example, a user may have interest in the popular item, however
using symmetric normalization will assign this item a small normal-
ized weight. As left normalization is only based on the popularity
(degree) of the central node in the normalization process, the neigh-
bor nodes are assigned the same importance weights. Utilizing left
normalization avoids representations of neighbor nodes being nor-
malized to a very small value such that useful information is lost.
Taking the user side as an example, the embedding propagation
from item to user with left normalization is defined as:

h(𝑙+1)
𝑢 =

∑
𝑣∈𝑁𝑢

1
|𝑁𝑢 |

h(𝑙)
𝑣 + h(𝑙)

𝑢 . (13)

3.3.3 Simple Average for Representation Propagation. To combine
the advantages of these two normalizations, we apply the average
operation over these two normalization. The embedding propaga-
tion from item to user with simple average is defined as:

h(𝑙+1)
𝑢 = h(𝑙)

𝑢 + 1
2

∑
𝑣∈𝑁𝑢

( 1
|𝑁𝑢 |

+ 1√
|𝑁𝑢 |

√
|𝑁𝑣 |

)h(𝑙)
𝑣 . (14)

Thanks to combining both symmetric and left normalization,
this formulation distinguishes the importance of each neighbor
node, in the mean time, it limits the range of importance to avoid
useful information loss. If the popular item is the user interested
in, the user representation can still capture the information of this
item.

3.4 Simplified Attention Network for Adaptive
Combination

As demonstrated above, neighbor representations by different nor-
malization methods are of different importance in learning the new
representation of the central node. For better combination of these
representations, we introduce a novel simplified attention network
for adaptively combining these neighbor representations with cen-
tral node’s representation. Let h(𝑙)

𝑁𝑢 ,𝐿𝑁
and h(𝑙)

𝑁𝑢 ,𝑆𝑁
denote the left

normalization and symmetric normalization based neighbor repre-
sentation of user 𝑢 at 𝑙-th layer. Taking the user side as an example,
the adaptive representation propagation process is formulated as:

h(𝑙+1)
𝑁𝑢 ,𝐿𝑁

=
∑
𝑣∈𝑁𝑢

1
|𝑁𝑢 |

h(𝑙)
𝑣 (15)

h(𝑙+1)
𝑁𝑢 ,𝑆𝑁

=
∑
𝑣∈𝑁𝑢

1√
|𝑁𝑢 |

√
|𝑁𝑣 |

h(𝑙)
𝑣 (16)

h(𝑙+1)𝑢 = h(𝑙)𝑢 + 𝛼 (𝑙+1)
𝑢,𝐿𝑁

h(𝑙+1)
𝑁𝑢 ,𝐿𝑁

+ 𝛼 (𝑙+1)
𝑢,𝑆𝑁

h(𝑙+1)
𝑁𝑢 ,𝑆𝑁

(17)

where 𝛼𝑙𝑢,∗ indicates the normalized attention scores of different
neighbor representations at 𝑙-th layer.

When calculating attention scores, we not only consider the
neighbor self-information, but also consider the similarity between

the central representation and the neighbor representation. Taking
into consideration such similarity information makes the impor-
tance of each neighbor node be related to the central node, i.e., a
neighbor node, which is more similar to the central node, is more
important and takes more weights when aggregation. Formally, the
attention representation network is defined as:

𝑧
(𝑙+1)
𝑢,∗ = W(𝑙)

1 𝜎

(
W(𝑙)

2 (h(𝑙+1)
𝑁𝑢 ,∗ + h(𝑙+1)

𝑁𝑢 ,∗ ⊙ h(𝑙)𝑢 )
)
, (18)

where the output 𝑧 (𝑙+1)𝑢,∗ is the attention score before normalization,
W(𝑙)

1 ∈ R1×𝑑𝑡 ,W(𝑙)
2 ∈ R𝑑𝑡×𝑑𝑙 are feature transformation matri-

ces, 𝜎 is the activation function, 𝑑𝑡 is the hidden layer size of the
attention network, ⊙ denotes the Hadamard product.

Empirically, we find that Eq.(18) is difficult for optimization, so
we propose a simplified attention network that removes the feature
transformation matrix and activation function, and uses a simple
average aggregation operation to compress the vector to a scalar:

𝑧
(𝑙+1)
𝑢,∗ = ave(h(𝑙+1)

𝑁𝑢 ,∗ + h(𝑙+1)
𝑁𝑢 ,∗ ⊙ h(𝑙)𝑢 ), (19)

where the function ave(·) takes the average of every element in the
input vector. Then the attention scores are normalized by a Softmax
function:

𝛼
(𝑙)
𝑢,∗ =

exp(𝑧 (𝑙)𝑢,∗)∑
𝑘∈{𝐿𝑁,𝑆𝑁 } exp(𝑧

(𝑙)
𝑢,𝑘

)
. (20)

3.5 Model Training
We train our model by minimizing the pairwise Bayesian Personal-
ized Ranking (BPR) [17] loss:

L =
∑

(𝑢,𝑖, 𝑗) ∈O
−log𝜎 (e∗𝑢 · e∗𝑖 − e∗𝑢 · e∗𝑗 ) + 𝜆 | |Θ| |

2
2 (21)

where O =
{
(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ O+, (𝑢, 𝑗) ∈ O−} denotes the training

dataset. O+ indicates observed positive user-item interactions and
O− indicates unobserved user-item interactions. Note that our
model introduces no extra parameters except for the node embed-
dings before aggregation process, i.e., Θ = {e𝑢 , e𝑣 |𝑢 ∈ U, 𝑣 ∈ V}.
𝜎 is the Sigmoid function and 𝜆 is the 𝐿2 regularization coefficient.

3.6 Model Discussion
To distinguish ourselves from prior works, we compare our model
with five recent works from five aspects, which is shown in table
1. First, since the transformation matrix and non-linear activation
function have been demonstrated empirically to be redundant in
recommendation task [3, 10], we remove those over-parameterized
and non-linear components as well. Second, LightGCN, NGCF, and
LR-GCCF incorporate the holistic connection to alleviate the over-
smoothing problem, however, with the increase of the numbers of
layers, the information of previous layers will be further weakened
and the impact of the low-order features becomes less dominant.
The residual connection allows the architecture to re-emphasize
feature from low-order receptive field. This design allows both the
low-order and high-order collaborative filtering signals to be well
utilized. Third, our model is the first work in the GCN based CF
models that considers a hybrid normalization strategy (symmet-
ric normalization and left normalization) simultaneously, which
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Table 1: Comparison of Different Graph Variants.
GC-MC Pinsage NGCF LR-GCCF LightGCN DGCN-HN

Remove Transformation Matrix × × × × ✓ ✓
Remove Non-linear Activation Function × × × ✓ ✓ ✓

Residual Connection × × × × × ✓
Holistic Connection × × ✓ ✓ ✓ ✓

Normalization Symmetric/Left Left Symmetric Symmetric Symmetric Symmetric&Left

Table 2: Dataset statistics.
Dataset User Item Instance Density
Gowalla 29,858 40,981 1,027,370 0.00084
Yelp2018 31,668 38,048 1,561,406 0.00130

Amazon-Book 52,643 91,599 2,984,108 0.00062

can well balance the recommendation accuracy and diversity as
explained in section 3.3.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets. Following [10, 21, 22], we evaluate the effective-
ness of our proposed model on three datasets: Gowalla, Yelp2018,
and Amazon-Book. These benchmark datasets are open sourced
real-world data with various domains, sizes, and sparsity levels.
• Gowalla1: This location recommendation dataset is a popular
location dataset that has check-ins information including times
and locations made by users. The locations are treated as items
in our case to predict user preferences based on the check-in
history.

• Yelp20182: This business recommendation dataset is obtained
from the Yelp Data Challenge in 2018. It has more than 1 million
records of the business like restaurants and bars.

• Amazon-Book3: Amazon review is a popular dataset which
can be used for product recommendation [9]. It contains sev-
eral subsets, such as Amazon-Electronics, Amazon-Movies and
Amazon-CDs. We select Amazon-Book subset for book recom-
mendation.
For a fair comparison, we use the same pre-processed datasets

which are publicly available from [10]. Table 2 shows the statistics
of the three datasets.

4.1.2 Baseline Models. We compare our approach with the fol-
lowing state-of-the-art methods, including classical CF method
(BPRMF), GCN-based CF methods (GCMC, Pinsage and NGCF),
DeepGCN-basedmethod (ResGCN), DisentangledGCN-basedmeth-
ods (MacridVAE, DGCF) and Light-wise GCN-basedmethods (Light-
GCN).

4.1.3 Evaluation Metrics. Following [10], we adopt two widely-
used metrics, namely Recall@k and NDCG@k, to evaluate the accu-
racy of proposed and baseline models for top-K recommendation.
• Recall@k indicates the coverage of positive items as a result of
top-𝑘 recommendation. It does not consider the actual position
of the items as long as it is inside the top-𝑘 recommendation list.

1https://snap.stanford.edu/data/loc-gowalla.html
2https://www.yelp.com/dataset/challenge
3http://jmcauley.ucsd.edu/data/amazon/

Table 3: The overall accuracy comparison. Underline indi-
cates the second best model performance. Boldface denotes
the best model performance. We conduct Wilcoxon signed
rank test. Asterisks indicates a statistically significant dif-
ference between the scores of the best and second-best algo-
rithms.

Dataset Gowalla Yelp2018 Amazon-Book
Model Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF 0.1291 0.1109 0.0433 0.0354 0.0250 0.0196
GC-MC 0.1395 0.1204 0.0462 0.0379 0.0288 0.0224
PinSage 0.1380 0.1196 0.0471 0.0393 0.0282 0.0219
NGCF 0.1569 0.1327 0.0579 0.0477 0.0337 0.0266
ResGCN 0.1637 0.1343 0.0592 0.0482 0.0370 0.0282

MacridVAE 0.1618 0.1202 0.0612 0.0495 0.0383 0.0295
DGCF 0.1794 0.1521 0.0640 0.0522 0.0399 0.0308

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

DGCN-HN 0.1905★ 0.1606★ 0.0710★ 0.0584★ 0.0505★ 0.0393★

%Improv. 4.10% 3.35% 9.40% 10.19% 22.87% 24.76%

• NDCG@k: The Normalized Discounted Cumulative Gain (NDCG)
is a position-aware evaluationmetric that it assigns largerweights
on higher-ranked true positives.

Besides accuracy metrics, we also utilize two commonly-used met-
rics: Coverage@k and Entropy@k for diversity evaluation [4, 16].

• Coverage@k indicates the proportion of recommended items to
the universal set. The upper bound of Coverage@k is 1, and the
larger the better as more items are recommended to users [4].

• Entropy@k focuses on the distribution of different items to be
recommended. It calculates the entropy value based on recom-
mended times of different rounds. A larger entropy value in-
dicates a better diversity as it indicates the heterogeneity of
recommended items is high [16].

4.1.4 Parameter Settings. We implement our models using Ten-
sorflow [1]. For a fair comparison, we copy the best performance
of BPRMF, GC-MC, Pinsage, NGCF, MacridVAE and DGCF-1 from
[22], LightGCN from [10] directly. To be consistent with [22] and
[10], we set the embedding size as 64, initialize the embedding pa-
rameters with the Xavier initialization method [6] and optimize
our model with Adam optimizer [12]. Moreover, we perform a grid
search to search the best hyper-parameter settings. The learning
rate is searched in the range of {10−3, 5×10−4, 10−4, 5×10−5, 10−5},
and the coefficient of 𝐿2 regularization is tuned in the range of
{10−1, 5×10−2, 10−2, 5×10−3, 10−3, 5×10−3, 10−4}. No extra hyper-
parameters are needed to be tuned besides learning rate and 𝐿2
regularization coefficient, which makes our results easy to repro-
duce.
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4.2 Accuracy Comparison
Table 3 reports the overall performance comparison of 10-layer
DGCN-HN with baselines. We show the best accuracy we can ob-
tain for each method. For 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝑁𝐷𝐶𝐺@𝑘 , we set 𝑘 = 20
by default. We conducted Wilcoxon signed rank tests [5] to evalu-
ate the significance of the difference between the best-performing
algorithm and the second-best algorithm.

We make the following observations:

• DGCN-HN consistently yields the best performance for all datasets.
More precisely, DGCN-HN outperforms the strongest baselines
by 4.10%, 9.40% and 22.87% in terms of Recall@20 ( 3.35%, 10.19%
and 24.76% in terms of NDCG@20) on Gowalla, Yelp2018 and
Amazon-Book, respectively. The significant improvement is at-
tributed to the following two aspects: 1) bymodeling higher-order
graph structure information with a deep graph convolutional
network, DGCN-HN is able to exploiting more user-item collab-
orative signals, which leads to better feature representations of
users and items; 2) by using a hybrid normalization module, the
flexible modeling of neighbor importance leads to better aggre-
gation of neighbor information.

• BPRMF obtains the worst performance on all three datasets be-
cause it projects the single ID of a node to its embedding which
might ignore underlying relation information. By leveraging the
user-item bipartite graph to explicitly model relation informa-
tion, GC-MC, PinSage and NGCF achieve significantly better
performance compared with BPRMF. In particular, since NGCF
captures higher-order user-item information, it performs bet-
ter than GCMC and PinSage, which reflects the importance of
modeling higher-order information of neighbors.

• ResGCN outperforms NGCF because the residual connection of-
fers better representation capacity. However, it performs worse
than LightGCN. Possible reason is that the complicated feature
transformation and non-linear activation restricts its representa-
tion capacity for the CF task.

• MacridVAE and DGCF further achieves better performance com-
paredwith GC-MC, PinSage andNGCF on all datasets. The reason
is that these methods exploit diverse relationships among users
and items in the interaction history, and disentangle user in-
tents into several latent factors, which leads a more fine-grained
feature representation.

• LightGCN outperforms the other baselines on all datasets and
serves as the best baseline. It removes the feature transforma-
tion and non-linear activation function, learns users and items
embeddings with a linear embedding propagation function.

4.3 Accuracy-Diversity Trade-off
Most of the existing graph-based CF models consider accuracy as
the only evaluation metric without paying any attention to diver-
sity of the recommendation results, which is not reasonable as
the users may loss interest to the recommender system when pop-
ular items are recommended to her frequently. A good trade-off
between accuracy and diversity, which makes the system recom-
mends more diverse items while maintaining comparable accuracy,
is very important. To evaluate the quality of trade-off between ac-
curacy and diversity, we compare the accuracy and diversity of
10-layer DGCN-HN with the best baseline LightGCN on Gowalla
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Figure 4: Accuracy-diversity comparison of our proposed
DGCN-HN to LightGCN on Gowalla dataset.

with different values of 𝑘 for 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝑁𝐷𝐶𝐺@𝑘 , 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑘
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦@𝑘 in this section. Results are presented in Figure 4.
We have the following observations:
• DGCN-HN achieves higher accuracy and diversity than Light-
GCN consistently with the growth of 𝑘 for all metrics. In partic-
ular, the relative improvement with respect to the Coverage@20
metric is 36.88%, which shows the great ability of our proposed
method in recommending diverse items to users.

• According to the accuracy-diversity dilemma [26], increasing
one often results in sacrificing the other. However, DGCN-HN
not only achieves better accuracy than LightGCN, but also gets
higher diversity than LightGCN. This again demonstrates the
superior performance of our proposed DGCN-HN.

• By combining left normalization and symmetric normalization
which focus on diversity and accuracy separately, our proposed
DGCN-HN increases accuracy and diversity simultaneously, but
not a compromise of the two metrics. It provides new ideas to
resolve the accuracy-diversity dilemma.

4.4 Ablation and Effectiveness Analysis

Table 4: Performance comparison of DGCN-HN with dif-
ferent choices of normalization schemes in graph convo-
lution. Underline indicates the second best model perfor-
mance. Boldface denotes the best model performance.

Dataset Gowalla Yelp2018
Normalization Recall@20 Coverage@20 Recall@20 Coverage@20

𝐿 0.1670 0.7230 0.0662 0.6311
𝑆 0.1855 0.2971 0.0680 0.2254
𝑅 0.1578 0.1037 0.0599 0.1182
𝐿&𝑆 0.1892 0.4968 0.0695 0.3745
𝐿&𝑅 0.1647 0.4416 0.0526 0.2694
𝑆&𝑅 0.1702 0.2169 0.0523 0.1743
𝐿&𝑆&𝑅 0.1744 0.3500 0.0541 0.2407

1 𝐿, 𝑆 and 𝑅 means left,symmetric and right normalization respectively.
2 & denotes combination operation.
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4.4.1 Impact of Normalization. In this paper, we propose to com-
bine left normalization with symmetric normalization for better
recommendation. To study its rationality, we study different choices
here. Table 4 shows the Recall@20 and Coverage@20 of 8-layer
DGCN-HN with different types of normalization. Due to the space
limitation, the results in terms of NDCG@20 and Entropy@20 are
omitted. We have the following observations:

• When a single normalization is used, left normalization achieves
best diversity, while symmetric normalization obtains the best
accuracy. Right normalization performs worst in both accuracy
and diversity.

• Compared with other hybrid normalization, the combination of
left normalization and symmetric normalization obtains not only
the best accuracy, but also the best diversity.

• Based on comprehensive comparison of all the choices of normal-
ization schemes, we can observe that left normalization achieves
best diversity, but with unsatisfied accuracy. Our proposed com-
bination of left normalization with symmetric normalization
achieves the best accuracy and the second best diversity, which
obtains the good trade-off between accuracy and diversity.

4.4.2 Impact of proposed component. To verify the effectiveness
of individual components in the proposed model, we conduct an
ablation analysis with 8-layer DGCN-HN on Gowalla and Yelp2018
datasets, and present the results in Table 5. Note that we only report
the result of Recall@20 and Coverage@20 due to space limitation.
We summarize the observations as follows:

• Four main components, including simplified attention network,
hybrid normalization, residual connection and holistic connec-
tion, of our proposed model are demonstrated to be effective.

• As shown in line 1 and line 2, the introduced simplified attention
network not only improves the accuracy, but also increases the
diversity of recommendation.

• As shown in line 2 and line 3, the proposed hybrid normalization
leads to significant performance improvement on both datasets
compared with fixed symmetric normalization, especially on
the diversity. This proves that it can be functioned as a module
for GCN-based algorithms to learn more accurate and diverse
neighborhood information.

• As shown in line 3, line 4 and line 5, the model performance de-
grades rapidly when removing residual connection and holistic
connection with 8-layer graph convolutional network, indicat-
ing that residual connection and holistic connection are both
important for training very deep graph convolutional network.

4.4.3 Impact of Network Depth. To investigate the influence of
network depth to the performance of different models, we vary the
number of layers 𝐿 in the range of {1, ..., 8}. We show the results of
𝑅𝑒𝑐𝑎𝑙𝑙@20 on Gowalla dataset in Figure 5. LightGCN-final indicates
that only the representation of last layer are used for prediction.
We have the following findings:

• Increasing the depth of DGCN-HN improves the performance
consistently. However, when increasing the depth, the perfor-
mance of LightGCN, LightGCN-final and ResGCNdegrade rapidly.
Therefore, except DGCN-HN, the other three models achieve

Table 5: Ablation studies of 8-layer DGCN-HN on each
proposed component. Underline indicates the second best
model performance. Boldface denotes the bestmodel perfor-
mance.

Dataset Gowalla Yelp2018
Architecture Recall Coverage Recall Coverage

DHCN-HN 0.1892 0.4968 0.0695 0.3745
DHCN-HN w/o 𝑆𝐴 0.1882 0.4814 0.0687 0.3673

DHCN-HN w/o 𝑆𝐴,𝐻𝑁 0.1851 0.2863 0.0676 0.2204
DHCN-HN w/o 𝑆𝐴,𝐻𝑁 ,𝑅𝐶 0.1693 0.1720 0.0614 0.1964

DHCN-HN w/o 𝑆𝐴,𝐻𝑁 ,𝑅𝐶 ,𝐻𝐶 0.1175 0.0406 0.0387 0.0184
1 𝑆𝐴 and 𝐻𝑁 mean simplified attention network and hybrid normalization.
2 𝑅𝐶 and 𝐻𝐶 mean residual connection and holistic connection respectively.
2 w/o denotes remove operation.

the best performance with a very shallow architecture. This ob-
servation verifies the effectiveness of our proposed method in
modeling higher-order collaborative signals.

• LightGCN-final achieves its best performance with a 2-layer
model, while LightGCN achieves its best performance with a
3-layer model. This indicates the effectiveness of holistic connec-
tion for prediction.

• ResGCN achieves its best performance with a 2-layer model.
Possible reason is that the feature transformation and non-linear
activation is hard to train in CF task, which restricts its capacity
in modeling GCN into deep layer.
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Figure 5: Performance comparison of different models with the
impact of the network depth.

4.5 User Analysis
We make a fine-level analysis to investigate which group of users
benefit from the higher-order collaborative signal more largely. We
compare the performance of 10-layer DGCN-HN with LightGCN
and LightGCN-final. We show the best accuracy we can obtain
for each method. It’s noticed that LightGCN-final achieves its best
accuracy with a 2-layer model, while LightGCN achieves its best
accuracy with a 3-layer model. Figure 6 shows the relative im-
provement (Y-axis in Figure 6) on Gowalla dataset with respect to
different user groups. The users are partitioned into three groups
according their interaction sparsity, i.e., the degree. We have the
following observations:
• DGCN-HN outperforms LightGCN-final and LightGCN on all
the user groups with respect to 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒@20. It
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demonstrates that exploiting higher-order collaborative signal
with deep graph convolutional network can lead to much more
informative representation.

• The improvement for sparse users that have very few interactions
are more significant than other users. It confirms that higher-
order collaborative signals can help to alleviate the sparsity issue,
as more items that the user are probably interested in are involved
in training.

• The improvement over LightGCN-final with 2 layer are larger
than LightGCN with 3 layer. It indicates that introducing more
neighbor information can bring in more improvements.
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Figure 6: Relative improvements of our proposedDGCN-HN
over different baselines on Gowalla dataset with respect to
different user groups (partitioned by user degree).

5 CONCLUSIONS
In this paper, we propose a novel graph convolutional network
based recommendation framework DGCN-HN with three main
components: deep graph convolutional network for recommenda-
tion, hybrid normalization layer and simplified attention network.
Extensive experiments on three real-world datasets demonstrate
consistent improvement on recommendation accuracy over state-
of-the-art methods. Further analysis on diversity highlight that our
proposed method can bring more diverse recommendation. Besides,
we show that our method can benefit more for users having fewer
interaction records in our extensive case study, which confirms that
higher-order collaborative signals can help to alleviate the sparsity
issue.
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